Segmentation

May be unequal, dynamic size

Simplifies handling of growing data
structures

Allows programs to be altered and
recompiled independently

Lends itself to sharing data among
processes

Lends itself to protection

Segment Tables

Corresponding segment in main memory

Each entry contains the length of the
segment

A bit is needed to determine if segment
is already in main memory

Another bit 1s needed to determine if the
segment has been modified since it was
loaded 1n main memory

Segment Table Entries

Virtual Address

| Segment Number | Offset I

Segment Table Entry
P|MOther Control Bi Length Segment Base

(b) Segmentation only

Virtual Address
| Seg # | Offset =d |

Segment Table

Register

Segment Table

y
Segment

| Length | Base |——

Y

Program Segmentation Mechanism Main Memory

Figure 8.12 Address Translation in a Segmentation System

Combined Paging and
Segmentation

Paging is transparent to the programmer

Segmentation is visible to the
programmer

Each segment is broken into fixed-size
pages

Combined Segmentation and

Pagi

Virtual Address

Segment Number Page Number Offset
Segment Table Entry

Control Bits Length Segment Base
Page Table Entry
|Plﬁth=r Control Bid Frame Number . P= present bit
M = Modified bit

(c) Combined segmentation and paging

Virtual Address

| Seg # | Page # | Offset |

Seg Table Pt

Segment
Table

Program

Segmentation
Mechanism

[
[
1
[
[
1
i
[
[
[
[
1
[
[
1
[
1
[
[
1
[
[
! Paging
: Mechanism

D e e e e R R R W R

OfrsetI Page

rame

N

Main Memory

Figure 8.13 Address Translation in a Segmentation/Paging System

Address Nain Memory
0

20K

35K

S0K

80K

90K

140K

190K

Dispatcher
No access
allowed
Process A
Branch instruction
(not allowed)
Process B < X
"""""" Reference to
__data (allowed)
Process C
b - - e - - - --—- Reference to

data (not allowed)

Figure 8.14 Protection Relationships Between Segments

Fetch Policy

Fetch Policy

Determines when a page should be brought
into memory
Demand paging only brings pages into
main memory when a reference is made to a
location on the page

Many page faults when process first started
Prepaging brings in more pages than
needed

More efficient to bring in pages that reside
contiguously on the disk

Placement Policy

Determines where in real memory a
process piece 1s to reside

Important in a segmentation system
Paging or combined paging with
segmentation hardware performs address
translation

Replacement Policy

Placement Policy
Which page is to be replaced?

Page removed should be the page least
likely to be referenced in the near future

Most policies predict the future behavior on
the basis of past behavior

11

Replacement Policy

Frame Locking
If frame 1s locked, it may not be replaced
Kernel of the operating system
Control structures
I/O buffers
Associate a lock bit with each frame

Basic Replacement
Algorithms
Optimal policy

Selects for replacement that page for which
the time to the next reference is the longest

Impossible to have perfect knowledge of
future events

This policy is “wishful thinking”, but can
serve as a base-line when post-evaluating
different policies

Basic Replacement
Algorithms

Least Recently Used (LRU)

Replaces the page that has not been
referenced for the longest time

By the principle of locality, this should be
the page least likely to be referenced in the
near future

Each page could be tagged with the time of
last reference. This would require a great
deal of overhead.

Basic Replacement
Algorithms
First-in, first-out (FIFO)

Treats page frames allocated to a process as
a circular buffer

Pages are removed in round-robin style
Simplest replacement policy to implement

Page that has been in memory the longest is
replaced

These pages may be needed again very soon
Performs relatively poorly

Basic Replacement
Algorithms

Clock Policy
Additional bit called a use bit

When a page is first loaded in memory, the use bit
is set to 1

When the page is referenced, the use bit is set to 1

When it is time to replace a page, the first frame
encountered with the use bit set to 0 is replaced.

During the search for replacement, each use bit set
to 1 is changed to 0

Page address

stream 2 3 2 1 5 2 4 5 3 2 5 2
2 2 23 R A EEEEEEE
OPT 3 3 3 3 3 3 3 3 3 3 3

F F F
2 2 2 2 2 2 2 2 3 3 3 3
LRU 3 3 3 5 5 5 5 5 5 5 5
—] OO0 OO0 OO0 @O OO Od &0 &0 &

F F F F
2 2 2 2 5 5 5 5 3 3 3 3
FIFO 3 3 3 3 2 2 2 2! 2 5 5
] OO0 OO OO O OO OO OO OO &2
F F F F F F
7 [[[FERE [[
CLOCK 7| (3% [eleia] [27] [25] [l zteize]| (2] 2@
> (5] [1ils{1] [[[4] [4] 3 [=

F F F F F

F = page fault occurring after the frame allocation is initially filled

Figure 8.15 Behavior of Four Page-Replacement Algorithms

17
First frame in
circular buffer of
n-1 0 frames that are
candidates for replacement

(a) State of buffer just prior to a page replacement

(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation

Comparison of Placement
Algorithms

» JOA

g 35 FIFO
€ 39| CLOCK
=

g > LRU
= 20

&

2 s OPT
=

£ 10

£
&Y

8 10 12 1

Number of Frames Allocated

Figure 8.17 Comparison of Fixed-Allocation, Local Page Replacement Algorithms

case study: page size = 256 words

20

