Deadlock Detection

» Two phase process

— deadlock detection
« figure out that deadlock occurred

— deadlock resolution
* do something to resolve it

P1
P2
P3
P4

Deadlock Detection

Rl R2 R3 R4 R5
0 1 0 0 1 P1
0 0 1 0 1 P2
0 0 0 0 1 P3
1 0 1 0 1 P4

Request matrix Q

Rl R2 R3 R4 R5 R1 R2 R3 R4 R5
1ol 1[1]o [2]1]1]2]1]
1 1 0 0 0 Resource vector

0 0 0 1 0

0 0 0 0 0 R1 R2 R3 R4 R5

Allocation matrix A

[oJoJofof1]

Available vector

Figure 6.10 Example for Deadlock Detection

Strategies once Deadlock

Detected

Abort all deadlocked processes

Back up each deadlocked process to
some previously defined checkpoint, and
restart all process

Original deadlock may reoccur

Successively abort deadlocked processes
until deadlock no longer exists

Successively preempt resources until
deadlock no longer exists

Selection Criteria Deadlocked
Processes

Many criteria to select from, e.g.

Least amount of processor time consumed
so far

Least number of lines of output produced so
far

Most estimated time remaining
Least total resources allocated so far
Lowest priority

Strengths and Weaknesses of the
Strategies

Table 6.1 Summary of Deadlock Detection, Prevention, and Avoidance

Approaches for Operating Systems [ISLO80]

Approach Resource Allocation Policy Different Schemes Major Advantages Major Disadvantages
“Works well for processes that performa | *Inefficient
Requesting all resources | single burst of activity *Delays process initiation
at once “No preemption necessary «Future resource requirements
must be known by processes
. . +Convenient when applied to resources
Prevention ConserEsvS undsieen It Preemption whose state can be saved and restored B ey oot e e
resources g necessary
easily -
<Feasible to enforce via compile-time
. checks +Disallows incremental resource
Resource ordering - . . .
«Needs no run-time computauon since requests
problem is solved in system design
«Future resource requirements
Avoidance Midway between that of Manipulate to find at No preemption necessary must be known by OS
- detection and prevention least one safe path wop P! ary *Processes can be blocked for
long periods
Detection Very liberal; requested resources | Invoke periodically to *Never delays process initiati e losses
are granted where possible test for deadlock Facilitates on-line handling - b
5

Dining Philosophers Problem

Figure 6.11 Dining Arrangement for Philosophers

Dining Philosophers Problem

/* program diningphilosophers */
semaphore fork [S] = {1};
int i;

void philosopher (int i)
{

while (true)

think () ;
wait (fork[i]):
wait (fork [(i+1) mod 5]):
eat();
signal(fork [(i+1l) mod 51);
signal(fork[il);

}

void main ()

parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4)):;

}

Figure 6.12 A First Solution to the Dining Philosophers Problem

Dining Philosophers Problem

/* program diningphilosophers */

semaphore fork([S5] = {1};
semaphore room = {4};
int i;

void philosopher (int I)
while (true)

think () ;

wait (room);

wait (fork[i]):

wait (fork [(i+1) mod 5]):
eat();

signal (fork [(i+1l) mod 5]);
signal (fork[il):

signal (room);

void main ()

parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4)):;

Figure 6.13 A Second Solution to the Dining Philosophers Problem

Dining Philosophers Problem

monitor dining controller;

cond ForkReady[5]; /% condition variable for synchronization */
boolean fork[5] = {true}; /% availability status of each fork */
void get_forks (int pid) /* pid is the philosopher id number */

int left = pid;
int right = (pid++) % 5;
/*grant the left fork“/
if (!fork(left)
cwait (ForkReady[left]); /% queue on condition variable */
fork (left) = false;
/*grant the right fork*/
if (!fork(right)
cwait (ForkReady (right); /* queue on condition variable */
fork (right) = false:

void release_forks (int pid)

int left = pid;

int right = (pid++) % 5;

/*release the left fork*/

if (empty(ForkReady[left]) /¥no one is waiting for this fork %/
fork (left) = true;

else /% awaken a process waiting on this fork */

csignal (ForkReady[left]) ;

/*release the right fork*/

if (empty(ForkReady([right]) /%no one is waiting for this fork */
fork (right) = true;

else /% awaken a process waiting on this fork ¥/
csignal (ForkReady[right]) ;

void philosopher[k=0 to 4] /% the five philosopher clients %/

while (true)

<think>;

get_forks (k); /* client requests two forks via monitor */
<eat spaghetti>;

release_forks (k) ; /% client releases forks via the monitor */

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

Dining Philosophers Problem

monitor dining_controller;
enum states (thinking, hungry, eating} state[5];

cond needFork([5] /* condition variable */
void get_forks (int pid) /% pid is the philosopher id number */
state[pid] = hungry; /* announce that I'm hungry */
if (state[(pid+l) % 3] eating
|| (state[(pid-1) % 5] eating
cwait (needFork[pid]); /% wait if either neighbor is eating */
state[pid] = eating; /% proceed if neither neighbor is eating */
}
void release forks(int pid)
state[pid] = thinking;
/¥ give right (higher) neighbor a chance to eat */
if (state[(pid+l) % 5] hungry)
|| (state[(pid+2) % 5]) eating)
csignal (needFork [pid+1]);
/% give left (lower) neighbor a chance to eat */
else if (state[(pid-1) % 5] == hungry)
|| (state[(pid-2) % 5]) eating)
csignal (needFork [pid-1]) ;
}
void philosopher [k=0 to 4] /* the five philosopher clients %/
while (true)
<think>;
get_forks (k); /% client requests two forks via monitor ¥/
<eat spaghetti>;
release forks(k); /* client releases forks via the monitor */

Figure 6.17 Another Solution to the g Philosophers Problem Using a Monitor

UNIX Concurrency
Mechanisms
Pipes
Messages
Shared memory
Semaphores
Signals

11

UNIX Pipes

used to carry data from one process to
another

one process writes into the pipe
the other reads from the other end
essentially FIFO

UNIX Pipes

* Examples
—Is | pr|lpr
* pipe Is into the standard input of pr
* pr pipes its standard output to lpr
* pr in this case is called a filter
— Is > filea
— pr < filea > fileb

* read input from filea and output to fileb

Signals

» Signals are a facility for handling
exceptional conditions similar to
software interrupts

* Generated by keyboard interrupt, error in
a process, asynchronous events

— timer
— job control

+ Kill command can generate almost any

signal

Table 6.2 UNIX Signals

Value Name

Description

01

02
03

SIGHUP

SIGINT
SIGQUIT

SIGILL
SIGTRAP

SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV

SIGSYS
SIGPIPE
SIGALRM

SIGTERM
SIGUSRI1
SIGUSR2
SIGCHLD
SIGPWR

Hang up: sent to process when kernel assumes that the
user of that process is doing no useful work

Interrupt

Quit; sent by user to induce halting of process and
production of core dump

Illegal instruction

Trace trap: triggers the execution of code for process
tracing

10T instruction

EMT instruction
Floating-point exception
Kill; terminate process
Bus error

Segmentation violation; process attempts to access
location outside its virtual address space

Bad argument to system call
Write on a pipe that has no readers attached to it

Alarm clock: issued when a process wishes to receive a
signal after a period of time

Software termination
User-defined signal 1
User-defined signal 2
Death of a child

Power failure

Linux Kernel Concurrency

Mechanisms

* Includes all the mechanisms found in
UNIX

« Atomic operations execute without
interruption and without interference

Linux Atomic Operations

Atomic Integer Operations

ATOMIC_INIT (int i)

At declaration: initialize an atomic_tto i

int atomic_read(atomic_t *v)

Read integer value of v

void atomic__set(atomic_t *v, int i)

Set the value of v to integer i

void atomic_add(int i, atomic_t *v)

Additov

void atomic_sub(int i, atomic_t *v)

Subtract i from v

void atomic__inc(atomic_t *v)

Addltov

void atomic__dec(atomic_t *v)

Subtract 1 from v

i-nt atomic_sub_and_test(int i, atomic_t Subtract i from v; return 1 if the result is zero;

v return 0 otherwise

int atomic_add_negative(int i, atomic_t Addito v; return 1 if the result is negaiive;

* . 5 :

v return 0 otherwise (used for implementing
semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the result is zero;
return 0 otherwise

int atomic_inc_and_test(atomic_t *v)

Add 1 to v; return 1 if the result is zero; return
0 otherwise

Linux Atomic Operations

Atomic Bitmap Operations

void set_bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr

void clear bit(int nr, veoid *addr)

Clear bit nr in the bitmap pointed to by addr

void change_bit(int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test_and_set_bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr:
return the old bit value

int test_and_clear bit (int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and_change_bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to by addr:
return the old bit value

int test_bit (int nr, void *addr)

Return the value of bit nr in the bitmap pointed
to by addr

Linux Spinlocks

+ Used for protecting a critical section

* Only one thread at a time can acquire a spinlock,
other threads will “spin” on that lock

— internally, integer local in memory
if value is 0, the thread sets it to 1 and enters critical section
— spinlocks are not very efficient
* why? waiting threads are in busy-waiting mode

* use when wait-times are expected to be very short

spin_lock(&lock)
/[*critical section */

spin_unlock(&lock)

19
Li K 1C
Mechani
* Spinlocks
— Used for protecting a critical section
Table 6.4 Linux Spinlocks

void spin_lock(spinlock_t *lock) Acquires the specified lock, spinning if needed until it is
available

void spin lock_irg(spinlock_t *lock) Like spin_lock, but also disables interrupts on the local
processor

void spin_lock_irgsave (spinlock_t *lock, unsigned long flags) | Like spin_lock_irq, but also saves the current interrupt state in
flags

void spin_lock_bh (spinlock_t *lock) Like spin_lock, but also disables the execution of all bottom
halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irg(spinlock_t *lock) Releases given lock and enables local interrupts

void spin_unlock_irgrestore (spinlock_t *lock, unsigned long Releases given lock and restores local interrupts to given

flags) previous state

void spin_unlock_bh(spinlock t *lock) Releases given lock and enables bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock

int spin_trylock(spinlock_t *lock) Tries to acquire specified lock: returns nonzero if lock is
currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is currently held and zero otherwise

Table 6.5 Linux Semaphores

Traditional Semaphores

void sema_init(struct semaphore *sem, int count)

Initializes the dynamically created semaphore to the given count

void init_MUTEX(struct semaphore *sem)

Initializes the dynamically created semaphore with a count of 1 (initially
unlocked)

void init_MUTEX_LOCKED (struct semaphore *sem)

Initializes the dynamically created semaphore with a count of 0 (initially
locked)

void down(struct semaphore *sem)

Attempts to acquire the given semaphore, entering uninterruptible sleep if
semaphore is unavailable

int down_interruptible (struct semaphore *sem)

Attempts to acquire the given semaphore, entering interruptible sleep if
semaphore is unavailable; returns -EINTR value if a signal other than the
result of an up operation is received.

int down_trylock(struct semaphore *sem)

Attempts to acquire the given semaphore, and returns a nonzero value if
semaphore is unavailable

void up (struct semaphore *sem)

Releases the given semaphore

Reader-Writer Semaphores

void init_rwsem(struct rw_semaphore, *rwsem)

Initalizes the dynamically created semaphore with a count of 1

void down_read(struct rw_semaphore, *rwsem)

Down operation for readers

void up_read (struct rw_semaphore, *rwsem)

Up operation for readers

void down_write(struct rw_semaphore, *rwsem)

Down operation for writers

void up_write(struct rw_semaphore, *rwsem)

Up operation for writers

21

Memory Barrier

» A class of instructions

* Enforces that CPU executes memory
operations in order

* Why would
execution?

one need to enforce in-order

22

11

Memory Barrier Operations

* Consider the following 2 processes
Proc #1:
loop: load the value of location y,
if it is 0 goto loop
print the value in location x
Proc #2:
store the value 55 into location x
store the value 1 into location y

* What is the output?

23
Table 6.6 Linux Memory Barrier Operations
rmb () Prevents loads from being reordered across the barrier
wmb () Prevents stores from being reordered across the barrier
mb () Prevents loads and stores from being reordered across the barrier
barrier () Prevents the compiler from reordering loads or stores across the barrier
smp_rmb () On SMP, provides a rmb () and on UP provides abarrier ()
smp_wmb () On SMP, provides a wmb () and on UP provides abarrier ()
smp_mb () On SMP, provides amb () and on UP provides abarrier ()
SMP = symmetric multiprocessor
UP = uniprocessor
24

12

Solaris Thread

Synchronization Primitives

Mutual exclusion (mutex) locks

Semaphores

Multiple readers, single writer (readers/

writer) locks
Condition variables

25
Type (1 octet)
owner (3 octets) wlock (1 octet)
Tock (Tocte) waiters (2 octets)
waiters (2 octets) union (4 octets)
(statistic pointer or
type specific info (4 octets) number of write requests)
(possibly a turnstile id,
lock type filler,
or statistics pointer)
thread owner (4 octets)
(a) MUTEX lock
(c) Reader/writer lock
Type (1 octet)
wlock (1 octet)
waiters (2 octets) waiters (2 octets)
count (4 octets) (d) Condition variable
(b) Semaphore
Figure 6.15 Solaris Synchronization Data Structures
26

13

Table 6.7 Windows Synchronization Objects

Object Type

Definition

Set to Signaled State When

Effect on Waiting Threads

An announcement that a system

Event event has occurred Thread sets the event All released
- mec.hamsm th.a t Pm_“de?] Owning thread or other thread

Mutex exclusion capabilities: equivalent One thread released

A releases the mutex

to a binary semaphore
A counter that regulates the

Semaphore number of threads that can use a Semaphore count drops to zero All released
resource

Waitable timer A counter that records the passage Set time arrives or time interval All released
of time expires

File change A notification of any file system Change occurs in file system that

notification changes. matches filter criteria of this object Oz e sl
A text window screen buffer (e.g..

Console input used to handle screen I/O for an Input is available for processing One thread released
MS-DOS application)
An instance of an opened file or y .

Job 10 device T/O operation completes All released

Memory resource A notification of change to a Specified type of change occurs

e e e All released

notification memory resource within physical memory
A program invocation. including

Process the address space and resources Last thread terminates All released
required to run the program

Thread 3{2::::‘“&13 ity i Thread terminates All released

Note: Colored rows correspond to objects that exist for the sole purpose of synchronization.

14

