Deadlock

- Permanent blocking of a set of processes that either compete for system resources or communicate with each other
- No efficient solution
- Involve conflicting needs for resources by two or more processes

Better illustrations ©

Reusable Resources

- Used by only one process at a time and not depleted by that use
- Processes obtain resources that they later release for reuse by other processes
 - E.g. Processors, I/O channels, main and secondary memory, devices, and data structures such as files, databases, and semaphores
- Deadlock occurs if each process holds one resource and requests the other

Example of Deadlock

Process P

Step	Action
\mathbf{p}_0	Request (D)
\mathbf{p}_1	Lock (D)
\mathbf{p}_2	Request (T)
\mathbf{p}_3	Lock (T)
p_4	Perform function
\mathbf{p}_5	Unlock (D)
n.	Unlock (T)

Process Q

Step	Action
\mathbf{q}_0	Request (T)
\mathbf{q}_1	Lock (T)
\mathbf{q}_2	Request (D)
\mathbf{q}_3	Lock (D)
\mathbf{q}_4	Perform function
\mathbf{q}_5	Unlock (T)
\mathbf{q}_6	Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Now consider the following sequence: $p_0 p_1 q_0 q_1 p_2 q_2$

5

Another Example of Deadlock

 Space is available for allocation of 200Kbytes, and the following sequence of events occur

 Deadlock occurs if both processes progress to their second request

Consumable Resources

- Created (produced) and destroyed (consumed)
- Interrupts, signals, messages, and information in I/O buffers
- Deadlock may occur if a Receive message is blocking
- May take a rare combination of events to cause deadlock

7

Example of Deadlock

• Deadlock occurs if receive is blocking

Resource Allocation Graphs

 Directed graph that depicts a state of the system of resources and processes

9

Resource Allocation Graphs

Figure 6.5 Examples of Resource Allocation Graphs

Conditions for Deadlock

- Mutual exclusion
 - Only one process may use a resource at a time
- Hold-and-wait
 - A process may hold allocated resources while awaiting assignment of others
- No preemption
 - No resource can be forcibly removed from a process holding it

1

Conditions for Deadlock

- Circular wait
 - A closed chain of processes exists, such that each process holds at least one resource needed by the next process in the chain

