Bakery Algorithm

« Also called Lamport’ s bakery algorithm
— after Leslie Lamport

A New Solution of Dijkstra's Concurrent Programming Problem
Communications of the ACM 17,8 (August 1974), 453-455.

* This is a mutual exclusion algorithm to
prevent concurrent threads from entering
critical sections concurrently

* source: wikipedia

Bakery Algorithm

* Analogy
— bakery with a numbering machine
— each customer receives unique number
* numbers increase by one as customers enter

— global counter displays number of customer
being served currently

« all others wait in queue

— after baker 1s done serving customer the
next number is displayed

— served customer leaves




Bakery Algorithm

* threads and bakery analogy

— when thread wants to enter critical section it
has to make sure it has the smallest number.
* however, with threads it may not be true that
only one thread gets the same number
e.g., if number operation is non-atomic
* if more that one thread has the smallest number
then the thread with lowest id can enter
* use pair (number, ID)
— In this context (a,b) < (c,d) is equivalent to
— (a<c) or ((a==c) and (b<d))

3
Bakery Algorith
from wikipedia a ery gorl m

// declaration and initial values of global variables

Entering: array [l..N] of bool = {false};

Number: array [l1..N] of integer = {0};
1 lock(integer i)
2
3 Entering[i] = true;
4 Number[i] = 1 + max(Number[l], ..., Number[N]);
5 Entering[i] = false;
6 for (j = 1; j <= N; j++) {
7 // Wait until thread j receives its number:
8 while (Entering[j]) { /* nothing */ }
9 // Wait until all threads with smaller numbers or with the same
10 // number, but with higher priority, finish their work:
11 while ((Number[j] != 0) && ((Number[j], j) < (Number[i], i))) {
12 /* nothing */
13 }
14 }
15
16 unlock(integer i) { Number([i] = 0; }
17
18 Thread(integer i) {
19 while (true) {
20 lock(1i);
21 // The critical section goes here...
22 unlock(i);
23 // non-critical section...
24 } 4

25 }




Peterson’ s Algorithm 1981

* solves critical section problem

* based on shared memory for

communication

Peterson’ s Algorithm

from wikipedia

flag[0] =0
flag[1l] =0
turn =0

P0: flag[0] =1
turn = 1
while( flag[l] && turn == 1 );
// do nothing
// critical section

// end of critical section
flag[0] = 0

Pl:

flag[l] = 1

turn = 0

while( flag[0] && turn == 0 );
// do nothing

// critical section

// end of critical section
flag[l] = 0

flag value 1 means process wants to enter critical section




Semaphores

* Special variable called a semaphore is
used for signaling

« If a process is waiting for a signal, it is
suspended until that signal is sent

Semaphores

» Semaphore is a variable that has an
integer value
— May be initialized to a nonnegative number

— Wait operation decrements the semaphore
value

— Signal operation increments semaphore
value




Semaphore Primitives

struct semaphore {
int count;

queueType queue;
}

void semWait (semaphore s)
{
s.count—;
if (s.count < 0)
{
place this process in s.queue;
block this process
}
}
void semSignal (semaphore s)
{
s.count++;
if (s.count <= 0)
{
remove a process P from s.queue;
place process P on ready list;

Figure 5.3 A Definition of Semaphore Primitives

Binary Semaphore Primitives

struct binary semaphore {
enum {zero, one} value;

queueType queue;
}i

void semWaitB(binary semaphore s)
{
if (s.value = 1)
s.value = 0;
else
{
place this process in s.queue;
block this process;
}
}
void semSignalB (semaphore s)
{
if (s.queue.is_empty())
s.value = 1;
else
{
remove a process P from s.queue;
place process P on ready list;

Figure 5.4 A Definition of Binary Semaphore Primitives




@ Prul:':»'ur
|_> s=1
Assume process A,B T
and C depend on result ©) sy
of process D S o o i B ey qu_l
Blocked queue ‘Semaphore Ready queue
L. @ l"roc];ssor
Initially one result of D L2 | |
is available (s = 1) LITDL e —TTIC
@ l’rm:&sol‘
I—» [T E S mmc»J
Blocked queue ‘Semaphore Ready queue
@ Pruv.:‘ssur
|—»|||||_.| s=o|—»||n|n|A>—|
Blocked queuc Semaphore Ready queue
@ Pl'm;(;\sol'
|—» [ELE]l [ —TTT1 »J
Blocked queue ‘Semaphore Ready queue
@ I’I'm;;&sﬂr
|—» [T mE = 111 |c>—|
Blocked queue ‘Semaphore Ready queue

Mutual Exclusion Using
Semaphores

/* program mutualexclusion */
const int n = /* number of processes */;
semaphore s = 1;
void P(int 1)
{
while (true)
{
semWait (s) ;
/* critical section /s
semSignal (s) ;
/* remainder /5
}
}
void main ()
{
parbegin (P(1), P(2), . . ., P(n));
}

Figure 5.6 Mutual Exclusion Using Semaphores




Queue for Value of
semaphore lock  semaphore lock

Assume 3
processes,
A,Band C

\

semSig

B

C

|

Critical
region

Normal
execution

Blocked on
semaphore
lock

Note that normal
execution can
proceed in parallel
but that critical
regions are serialized.




