Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

Concurrency

* Multiple applications
* Structured applications
 Operating system structure




Concurrency

Table 5.1 Some Key Terms Related to Concurrency

critical section A section of code within a process that requires access to shared resources
and which may not be executed while another process is in a corresponding
section of code.

deadlock A situation in which two or more processes are unable to proceed because
each is waiting for one of the others to do something.

livelock A situation in which two or more processes continuously change their state in
response to changes in the other process(es) without doing any useful work.

mutual exclusion The requirement that when one process is in a critical section that accesses
shared resources, no other process may be in a critical section that accesses
any of those shared resources.

race condition A situation in which multiple threads or processes read and write a shared
data item and the final result depends on the relative timing of their
execution.

starvation A situation in which a runnable process is overlooked indefinitely by the
scheduler; although it is able to proceed, it is never chosen.

Difficulties of Concurrency

« Sharing of global resources

 Operating system managing the
allocation of resources optimally

« Difficult to locate programming errors




Currency

Communication among processes

Sharing resources

Synchronization of multiple processes

Allocation of processor time

Concurrency

* Multiple applications
— Multiprogramming
» Structured application

— Application can be a set of concurrent
processes

 Operating-system structure

— Operating system is a set of processes or
threads




A Simple Example

void echo()

{
chin = getchar()
chout = chin;
putchar (chout) ;

}
7
A Simple Example
Assume void echo()
) {
single processor chin = getchar();
2 processes execute echo chout = chin;

putchar (chout) ;

global variables )

What are the possible outputs?




A Simple Example

Now assume 2 processors

Process Pl Process P2

chin = getchar();

chin = getchar();
chout = chin; chout = chin;
putchar (chout) ; .
putchar (chout) ;

Operating System Concerns

+ Keep track of various processes

» Allocate and deallocate resources
— Processor time
— Memory
— Files
— I/O devices
* Protect data and resources

* Output of process must be independent of the
speed of execution of other concurrent
processes




Process Interaction

 Processes unaware of each other
 Processes indirectly aware of each other
* Process directly aware of each other

11
Table 5.2 Process Interaction
Degree of Awareness | Relationship Influence that one Potential Control
Process has on the Problems
Other
Processes unaware of | Competition *Results of one «Mutual exclusion
each other process independent
of the action of
others «Deadlock (renewable
resource)
*Timing of process X
may be affected +Starvation
Processes indirectly Cooperation by *Results of one «Mutual exclusion
aware of each other sharing process may depend
(e.g.. shared object) on information
obtained from others | *Deadlock (renewable
resource)
*Timing of process X
may be affected +Starvation
*Data coherence
Processes directly Cooperation by *Results of one «Deadlock
aware of each other communication process may depend | (consumable
(have communication on information resource)
primitives available to obtained from others
them)
«Starvation
*Timing of process 12
may be affected




Competition Among
Processes for Resources

Mutual Exclusion

Critical sections

Only one program at a time is allowed in its
critical section

Example only one process at a time is allowed
to send command to the printer

Deadlock
Starvation

Requirements for Mutual
Exclusion

Only one process at a time is allowed in
the critical section for a resource

A process that halts in its non-critical
section must do so without interfering
with other processes

No deadlock or starvation




Requirements for Mutual
Exclusion cont.

A process must not be delayed access to
a critical section when there is no other
process using it

No assumptions are made about relative
process speeds or number of processes

A process remains inside its critical
section for a finite time only

Mutual Exclusion:

Hardware Support

Interrupt Disabling

In general: A process runs until it invokes
an operating system service or until it is
interrupted

Uni-processor: Disabling interrupts
guarantees mutual exclusion

Processor is limited in its ability to interleave
programs

Multiprocessing
disabling interrupts on one processor will
not guarantee mutual exclusion

16




Mutual Exclusion:
Hardware Support

Special Machine Instructions
Performed in a single instruction cycle

Access to the memory location 1s blocked
for any other instructions

Mutual Exclusion:
Hardware Support

Test and Set Instruction
boolean testset (int i) {
if (i == 0) {
i=1;
return true;

}
else {

return false;
}




Mutual Exclusion:
Hardware Support

+ Exchange Instruction

void exchange (int register,
int memory) ({

int temp;
temp = memory;
memory = register;

register = temp;

Mutual Exclusion

* parbegin: initiate all processes and resume program
after all Pi’ s have terminated

/* program mutualexclusion */

const int n = /* number of processes */;

int bolt;
void P(int i)
{
while (true)
{
while (!testset (bolt))
/* do nothing */;
/* critical section */;
bolt = 0;
/* remainder =/
}
}
void main ()
{

/* program mutualexclusion */

int const n = /* number of processes¥=/;

int bolt;
void P(int i)
{
int keyi;
while (true)
{
keyi = 1;
while (keyi != 0)
exchange (keyi, bolt):;
/* critical section */;
exchange (keyi, bolt);
/* remainder =/
}
}

bolt = 0; void main()
parbegin (P(1), P(2), . . . , P(n))
bolt = 0;
} parbegin (P(1), P(2), . . ., P(n));

}

(a) Test and set instruction

(b) Exchange instruction

Figure 5.2 Hardware Support for Mutual Exclusion

10



Mutual Exclusion Machine

Instructions

« Advantages

— Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

— It is simple and therefore easy to verify

— It can be used to support multiple critical
sections

21

Mutual Exclusion Machine
Instructions

» Disadvantages
— Busy-waiting consumes processor time

— Starvation is possible when a process leaves a
critical section and more than one process is
waiting.

— Deadlock

« If a low priority process has the critical section and a
higher priority process needs it, the higher priority
process will obtain the processor to wait for the critical
section (which will not be returned).

22

11



