
1

1

Concurrency: Mutual Exclusion
and Synchronization

Chapter 5

2

Concurrency

•  Multiple applications
•  Structured applications
•  Operating system structure

2

3

Concurrency

4

Difficulties of Concurrency

•  Sharing of global resources
•  Operating system managing the

allocation of resources optimally
•  Difficult to locate programming errors

3

5

Currency

•  Communication among processes
•  Sharing resources
•  Synchronization of multiple processes
•  Allocation of processor time

6

Concurrency

•  Multiple applications
– Multiprogramming

•  Structured application
– Application can be a set of concurrent

processes
•  Operating-system structure

– Operating system is a set of processes or
threads

4

7

A Simple Example

void echo()
{
 chin = getchar();
 chout = chin;
 putchar(chout);
}

8

A Simple Example

void echo()
{
 chin = getchar();
 chout = chin;
 putchar(chout);

}

•  Assume
–  single processor
–  2 processes execute echo
–  global variables

•  What are the possible outputs?

5

9

A Simple Example

Process P1 Process P2
. .
chin = getchar(); .
. chin = getchar();
chout = chin; chout = chin;
putchar(chout); .
. putchar(chout);
. .

Now assume 2 processors

10

Operating System Concerns
•  Keep track of various processes
•  Allocate and deallocate resources

–  Processor time
–  Memory
–  Files
–  I/O devices

•  Protect data and resources
•  Output of process must be independent of the

speed of execution of other concurrent
processes

6

11

Process Interaction

•  Processes unaware of each other
•  Processes indirectly aware of each other
•  Process directly aware of each other

12

7

13

Competition Among
Processes for Resources

•  Mutual Exclusion
– Critical sections

•  Only one program at a time is allowed in its
critical section

•  Example only one process at a time is allowed
to send command to the printer

•  Deadlock
•  Starvation

14

Requirements for Mutual
Exclusion

•  Only one process at a time is allowed in
the critical section for a resource

•  A process that halts in its non-critical
section must do so without interfering
with other processes

•  No deadlock or starvation

8

15

Requirements for Mutual
Exclusion cont.

•  A process must not be delayed access to
a critical section when there is no other
process using it

•  No assumptions are made about relative
process speeds or number of processes

•  A process remains inside its critical
section for a finite time only

16

Mutual Exclusion:
Hardware Support

•  Interrupt Disabling
–  In general: A process runs until it invokes

an operating system service or until it is
interrupted

– Uni-processor: Disabling interrupts
guarantees mutual exclusion

•  Processor is limited in its ability to interleave
programs

– Multiprocessing
•  disabling interrupts on one processor will

not guarantee mutual exclusion

9

17

Mutual Exclusion:
Hardware Support

•  Special Machine Instructions
– Performed in a single instruction cycle
– Access to the memory location is blocked

for any other instructions

18

Mutual Exclusion:
Hardware Support

•  Test and Set Instruction
 boolean testset (int i) {
 if (i == 0) {
 i = 1;
 return true;
 }
 else {
 return false;
 }
 }

10

19

Mutual Exclusion:
Hardware Support

•  Exchange Instruction
 void exchange(int register,

 int memory) {
 int temp;
 temp = memory;
 memory = register;
 register = temp;
 }

20

Mutual Exclusion
•  parbegin: initiate all processes and resume program

after all Pi’s have terminated

11

21

Mutual Exclusion Machine
Instructions

•  Advantages
– Applicable to any number of processes on

either a single processor or multiple
processors sharing main memory

–  It is simple and therefore easy to verify
–  It can be used to support multiple critical

sections

22

Mutual Exclusion Machine
Instructions

•  Disadvantages
–  Busy-waiting consumes processor time
–  Starvation is possible when a process leaves a

critical section and more than one process is
waiting.

–  Deadlock
•  If a low priority process has the critical section and a

higher priority process needs it, the higher priority
process will obtain the processor to wait for the critical
section (which will not be returned).

