Windows Processes

 Implemented as objects

+ An executable process may contain one
or more threads

 Both processes and thread objects have
built-in synchronization capabilities

Access
token

Virtual address descriptors

Process
object | ! I I | |

Available
Handle Table objects
Handlel I @
Handle2 i _
Handle3 i I @

Figure 4.12 A Windows Process and Its Resources

Windows Process Object

Object Type T

Process ID
Security Descriptor
Base priority
Default processor affinity
Object Body Quota limits

Attributes Execution time
1/0 counters
VM openation counters
Exception/debugging ports
Exit status

Create process

Open process

Services Query process information
Set process information
Current process
Terminate process

(a) Process object

Windows Thread Object

-

it T Thread

Thread ID
Thread context
Dynamic priority
Base priority
Object Body Thread processor affinity
Attributes Thread execution time
Alert status
Suspension count
Impersonation token
Termination port
Thread exit status

Create thread

Open thread

Query thread information
Set thread information
Services Current thread
Terminate thread

Get context

Set context

Suspend

Resume

Alert thread

Test thread alert
Register termination port

(b) Thread object

Windows 2000

Thread States
Ready

+ Standby

* Running

+ Waiting

* Transition

* Terminated

Runnable

Pick to Standby
Rr‘ m
Ready Drespted Running

44 J
I\ /

Resource Unblock/Resume
Available Resource Available Block/
Suspend
Transition <*———————— Waiting Terminated

Unblock
Resource Not Available

Not Runnable

Terminate

Figure 4.14 Windows Thread States

Solaris

Process includes the user’ s address
space, stack, and process control block

User-level threads
Lightweight processes (LWP)
Kernel threads

Kernel

Hardware Ill |i| m m Iil
Sﬂscr-level thread @ Kernel thread (© wuightwelght Process m Processor

Figure 4.15 Solaris Multithreaded Architecture Example

UNIX Process Structure Solaris Process Structure

Process ID Process ID
User IDs User IDs
Signal Dispatch Table Signal Dispatch Table
Memory Map Memory Map
Priority
Signal Mask
egisters
STACK
File Descriptors File Descriptors
Processor State

LWP2 LWP1
LWP ID < LWPID
Priorit: Priorit:

Signal Mask Signal Mask
Registers Registers
STACK STACK

Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

Solaris Lightweight Data
Structure

¢ Identifier

* Priority

+ Signal mask

» Saved values of user-level registers

+ Kernel stack

* Resource usage and profiling data
 Pointer to the corresponding kernel thread
 Pointer to the process structure

Stop User-Level Threads

Runnable
Continue T Wakeup

Dispatch

Stop

Sleeping

(
s
=
Preempt
—]

Sleep
P Active =
‘f" ~~~
(e \\~
a”” ~\~\\
”_f ‘\\\
.- - Seel
Timeslice
or Preempt, Running Stop
Blocking
Runnable System Stopped
Call

Continue
Blocked Stop

Lightweight Processes

11
Figure 4.17 Solaris User-Level Thread and LWP States

Linux Task Data Structure

State

Scheduling information
— normal or real-time, priorities

Identifiers

Interprocess communication
Links

Times and timers

File system

Address space
Processor-specific context

Linux States of a Process

Running
Interruptable
Uninterruptable
Stopped
Zombie

Stopped

Interruptible

Figure 4.18 Linux Process/Thread Model

