Processes and Resources

Virtual
Memory

2
/
7
/
,
2
/ \ >\ N Computer
4 Y Resources

"

Figure 3.10 Processes and Resources (resource allocation at one t in time)

P, is blocked, waiting for the 1/O allocated to P,

P, has been swapped out (it is thus suspended)
Sequence 6 CS240

Operating System Control
Structures

» Information about the current status of

each process and resource

+ Tables are constructed for each entity the

operating system manages

Sequence 6 CS240

Memory Tables

» Keep track of
— allocation of main memory to processes

— allocation of secondary memory to
processes

— protection attributes for access to shared
memory regions

— information needed to manage virtual
memory

Sequence 6 CS240 3

[/O Tables

+ Used by OS to manage I/O devices
— I/0 device is available or assigned
— status of I/O operation

— location in main memory being used as the
source or destination of the /O transfer

Sequence 6 CS240 4

File Tables

» Keep track of
— existence of files
— location on secondary memory
— current Status
— attributes

— sometimes this information is maintained
by a file management system

Sequence 6 CS240

Process Table

* Mange processes
— where process is located
— attributes in the process control block

* Program
* Data
* Stack

Sequence 6 CS240

Process Image

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data. a user stack area, and
programs that may be modified.

User Program
The program to be executed.

System Stack
Each process has one or more last-in-first-out (LIFO) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process (see Table 3.5).

Sequence 6 CS240 7
Process
Image
Memory Tables
Process
Memory | 1
Devices | > 1/O Tables
Files |
Processes File Tables
Primary Process Table
Process 1
Process 2
Process
Process 3 Image
. Process
. n

[Ceomes }—

Figure 3.11 General Structure of Operating System Control Tables

Sequence 6 CS240 8

Process Control Block

* From Table 3.5

* Process identification

— Identifiers

* Numeric identifiers that may be stored with the
process control block include
Identifier of this process

— Identifier of the process that created this process
(parent process)

— User identifier

Sequence 6 CS240 9

Process Control Block

* Processor State Information
— User-Visible Registers

* A user-visible register is one that may be
referenced by means of the machine language
that the processor executes while in user mode.
Typically, there are from 8 to 32 of these
registers, although some RISC implementations
have over 100.

Sequence 6 CS240 10

Process Control Block

* Processor State Information
— Control and Status Registers

These are a variety of processor registers that are
employed to control the operation of the processor. These
include

* Program counter: Contains the address of the next
instruction to be fetched

 Condition codes: Result of the most recent arithmetic or
logical operation (e.g., sign, zero, carry, equal, overflow)

e Status information: Includes interrupt enabled/disabled
flags, execution mode

Sequence 6 CS240 11

Process Control Block

* Processor State Information

— Stack Pointers
* Each process has one or more last-in-first-out
(LIFO) system stacks associated with it. A stack
is used to store parameters and calling addresses
for procedure and system calls. The stack
pointer points to the top of the stack.

Sequence 6 CS240 12

Process Control Block

* Process Control Information

Sequence 6

— Scheduling and State Information

This is information needed by the OS to perform its
scheduling function

Process state: defines the readiness of the process to be
scheduled for execution (e.g., running, ready, waiting,
halted).

Priority: One or more fields may be used to describe the
scheduling priority of the process. In some systems, several
values are required (e.g., default, current, highest-
allowable)

Scheduling-related information: This will depend on the
scheduling algorithm used. Examples are the amount of
time that the process has been waiting and the amount of
time that the process executed the last time it was running.
Event: 1dentity of event the process is awaiting before it

can be resumed
CS240 13

Process Control Block

* Process Control Information

Sequence 6

— Data Structuring

* A process may be linked to other process in a
queue, ring, or some other structure.

E.g., all processes in a waiting state for a particular
priority level may be linked in a queue. A process
may exhibit a parent-child relationship with another
process. The process control block may contain
pointers to other processes to support these
structures.

CS240 14

Process Control Block

* Process Control Information

— Interprocess Communication
* Various flags, signals, and messages may be associated
with communication between two independent processes.
Some or all of this information may be maintained in the
process control block.

— Process Privileges

 Processes are granted privileges in terms of the memory
that may be accessed and the types of instructions that
may be executed. In addition, privileges may apply to the
use of system utilities and services.

Sequence 6 CS240 15

Process Control Block

* Process Control Information

— Memory Management

* This section may include pointers to segment
and/or page tables that describe the virtual
memory assigned to this process.

— Resource Ownership and Utilization

* Resources controlled by the process may be
indicated, such as opened files. A history of
utilization of the processor or other resources
may also be included; this information may be
needed by the scheduler.

Sequence 6 CS240 16

Processor State Information

+ Consists of contents of processor registers
— User-visible registers
— Control and status registers
— Stack pointers
 Program status word (PSW)
— contains status information

— E.g. consider the EFLAGS register on
Pentium machines

Sequence 6 CS240 17

Pentium II EFLAGS Register

A 16 /is 0
‘1 N A’V‘RHNI 10 ’o‘n‘l‘Tls’zH,\HPHc
D p|C[M|F| |[T|PL |F|F|F|F|F|F F F F

ID = Identification flag DF = Direction flag

VIP = Virtual interrupt pending IF = Interrupt enable flag

VIF = Virtual interrupt flag TF = Trap flag

AC = Alignmentcheck SF = Sign flag

VM = Virtual 8086 mode ZF = Zero flag

RF = Resume flag AF = Auxiliary carry flag

NT = Nested task flag PF = Parity flag

IOPL = VO privilege level CF = Carry flag

OF = Overflow flag

Figure 3.12 Pentium II EFLAGS Register

Sequence 6 CS240 18

entium II EFLAGS Register

Table 3.6 Pentium EFLAG.

Control Bits

AC (Alignment check)
Set if a word or doubleword is addressed on a nonword or nondoubleword boundary

1D (Identification flag)
If this bit can be set and cleared, this processor supports the CPUID instruction. This instruction
provides information about the vendor, family, and model

RF (Resume flag)
Allows the programmer to disable debug exceptions so that the instruction can be restarted after
a debug exception without immediately causing another debug exception.

TOPL (I/O privilege level)
When set, causes the processor to generate an exception on all accesses to IO devices during
protected mode operation.

DF (Direction flag)
Determines whether string processing instructions increment or decrement the 16-bit half-
registers I and DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-bit
operations).

TF (Interrupt enable flag)
When set, the processor will recognize external interrupts.

TF (Trap flag)
When set, causes an interrupt after the execution of each instruction. This is used for debugging.

Register Bits

Operating Mode Bits

NT (Nested task flag)
Tndicates that the current task is nested within another task in protected mode operation.

VM (Virtual 8086 mode)
Allows the programmer to enable or disable virtual 8086 mode, which determines whether the
processor runs as an 8086 machine.

VIP (Virtual interrupt pending)
Used in virtual 8086 mode to indicate that one or more interrupts are awaiting service.

VIF (Virtual interrupt flag)
Used in virtual 8086 mode instead of TF.

Condition Codes

AF (Auxiliary carry flag)
Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or logic operation
using the AL register.

CF (Carry flag)
Tndicates carrying our or borrowing into the leftmost bit position following an arithmetic
operation. Also modified by some of the shift and rotate operations.

OF (Overflow flag)
Tndicates an arithmetic overflow after an addition or subtraction.

PF (Parity flag)
arity of the result of an arithmetic or logic operation. 1 indicates even parity; 0 indicates odd
parity.

SF (Sign flag)
Indicates the sign of the result of an arithmetic or logic operation.

ZF (Zero flag)
Indicates that the result of an arithmetic or logic operation is 0.

Sequence 6 CS240 19

Modes of Execution

» User mode

— Less-privileged mode

— User programs typically execute in this

mode

 System mode, control mode, or kernel

mode

— More-privileged mode

— Kernel of the operating system

Sequence 6 CS240

20

10

Process Creation

* Process creation steps:
— Assign a unique process identifier
— Allocate space for the process
— Initialize process control block

— Set up appropriate linkages
* e.g. add new process to linked list used for
scheduling queue

— Create or expand other data structures

* e.g. maintain an accounting file

Sequence 6 CS240 21

When to Switch a Process

* Clock interrupt

— process has executed for the maximum
allowable time slice

* I/O interrupt
* Memory fault

— memory address is in virtual memory so it
must be brought into main memory

Sequence 6 CS240 22

11

When to Switch a Process

* Trap

— error or exception occurred

— may cause process to be moved to Exit state
* Supervisor call

— such as file open
* e.g. user process calls OS function to open file

Sequence 6 CS240 23

Change of Process State

* Outgoing process

— save context of processor including
program counter and other registers

— update the process control block of the
process that is currently in the Running
state

— move process control block to appropriate
queue — ready; blocked; ready/suspend

+ Select another process for execution

Sequence 6 CS240 24

12

Change of Process State

* Incoming process

— update the process control block of the
process selected

— update memory-management data structures

— restore context of the selected process

Sequence 6 CS240 25

Execution of the OS

* Non-process Kernel
— execute kernel outside of any process

— OS code is executed as a separate entity that
operates in privileged mode

» Execution Within User Processes

— OS software within context of a user
process

— Process executes in privileged mode when
executing OS code

Sequence 6 CS240 26

13

Sequence 6

Relationship
between OS and
User Process

| Process Switching Functions |

(b) OS functions execute within user processes

FE R

Process Switching Functions

(c) OS functions execute as separate processes 27

Sequence 6

Process
Identification

Processor State Process Control
Information Block

Process Control
Information

User Stack

part (b) of
Private User previous

Address Space
(Programs, Data) ﬁgure

Kernel Stack

1
1
'
! Shared Address
' Space
H
'
1

Figure 3.16 Process Image: Operating System
Executes Within User Space

CS240 28

14

Execution of the Operating
System

 Process-Based Operating System
— part (c) of previous figure
— implement OS as a collection of system

processes
— useful in multi-processor or multi-computer
environment
Sequence 6 CS240 29

UNIX SVR4 Process
Management

* Most of the operating system executes within
the environment of a user process

l)1 l)2 Pn

oS oS oS
Func- IFuncH ¢ o0 IFunc-|
tions tions tions

Process Switching Functions

(b) OS functions execute within user processes

Sequence 6 CS240 30

15

UNIX Process States

Table 3.9 UNIX Process States

User Running

Kernel Running

Ready to Run, in Memory

Asleep in Memory

Ready to Run, Swapped

Sleeping, Swapped

Preempted

Created

Zombie

Executing in user mode.
Executing in kernel mode.
Ready to run as soon as the kernel schedules it.

Unable to execute until an event occurs; process is in main memory
(a blocked state).

Process is ready to run, but the swapper must swap the process into
main memory before the kernel can schedule it to execute.

The process is awaiting an event and has been swapped to
secondary storage (a blocked state).

Process is returning from kernel to user mode, but the kernel
preempts it and does a process switch to schedule another process.

Process is newly created and not yet ready to run.

Process no longer exists, but it leaves a record for its parent process
to collect.

Sequence 6 CS240 31
Table 3.10 UNIX Process Image
User-Level Context

Process Text Executable machine instructions of the program

Process Data Data accessible by the program of this process

User Stack Contains the arguments. local variables. and pointers for functions
executing in user mode

Shared Memory Memory shared with other processes, used for interprocess

Register Context

Program Counter Address of next instruction to be executed: may be in kernel or
user memory space of this process

Processor Status Register Contains the hardware status at the time of preemption: contents
and format are hardware dependent

Stack Pointer Points to the top of the kernel or user stack. depending on the mode
of operation at the time or preemption

General-Purpose Registers Hardware dependent

System-Level Context

Process Table Entry Defines state of a process; this information is always accessible to
the operating system

U (user) Area Process control information that needs to be accessed only in the
context of the process

Per Process Region Table Defines the mapping from virtual to physical addresses: also
contains a permission field that indicates the type of access
allowed the process: read-only. read-write, or read-execute

Sequence 6 Kermel Stack Contains the stack frame of kernel procedures as the process 32

executes in kernel mode

16

return
to user,

User
Running

system call,
interrupt

interrupt,
interrupt return

fork

Created
Preempted
~ enough not enough memory
A N S memory, (swapping system only)
AN
~
~
~
~
preempt \\
swap out N
reschedule Mln d’ ':u:m“ P Ready to Run
‘y s swap in —
Kernel
Running
seep ‘wakeup wakeup
exit
v
P Adleep in swap out Sleep,
Memory Swapped

Figure 3.17 UNIX Process State Transition Diagram

Sequence 6

CS240

33

17

