
 



An Extensible Debugging Architecture 

Based on a Hybrid Debugging Framework 

 

A Dissertation 

Presented in Partial Fulfillment of the Requirement for the 

Degree of Doctor of Philosophy 

with a 

Major in Computer Science 

in the 

College of Graduate Studies 

University of Idaho 

 

 

By 

Ziad A. Al-Sharif 

 

 

 

 

December 1, 2009 

Major Professor: Dr. Clinton L. Jeffery 

Copyright © 2008-2009 Ziad Al-Sharif. All rights reserved. 



i 

Authorization to Submit Dissertation 

This dissertation of Ziad A. Al-Sharif, submitted for the degree of Doctor of Philosophy with a 

major in Computer Science and entitled ―An Extensible Debugging Architecture Based on a 

Hybrid Debugging Framework,‖ has been reviewed in final form. Permission, as indicated by the 

signatures and dates given below, is now granted to submit final copies to the College of Graduate 

Studies for approval. 

Major Professor:  Date:  

 Dr. Clinton L. Jeffery   

Committee Member:  Date:  

 Dr. Robert B. Heckendorn   

Committee Member:  Date:  

 Dr. Robert Rinker   

Committee Member:  Date:  

 Dr. Gregory W. Donohoe   

Department 

Administrator: 

  

Date: 

 

 Dr. Gregory W. Donohoe   

Discipline’s 

College Dean: 

  

Date: 

 

 Dr. Donald M. Blackketter   

Final Approval 

and Acceptance 

by the College of 

Graduate Studies: 

  

 

 

Date: 

 

 Dr. Margrit Von Braun   

 



ii 

Abstract 

The cost of writing debuggers is very high. Most debuggers are written employing low level 

operating system and hardware specific code, which is hard to port to new platforms or architectures 

and to extend with new debugging techniques. Moreover, current debuggers are usually limited in the 

amount of analysis that they perform and the level of detail that they provide in order to assist with 

debugging. Most debuggers are well suited for a specific class of bugs. Different bugs call for 

different debugging techniques, so experimentation is needed in order to develop the features that will 

someday be widely adopted in debuggers. This dissertation contributes three primary results. 

First, it introduces an event-driven debugging framework named AlamoDE (Alamo—Debug 

Enabled). The role of this framework is analogous to an abstraction layer upon which to build 

debuggers. AlamoDE 1) provides in-process debugging support with simple communication and no 

intrusion on the buggy program space, 2) enables debugging tools to be written at a high level of 

abstraction, and 3) facilitates developers of experimental automatic debugging features in a very high 

level language. AlamoDE supports construction of a variety of user-defined debugging tools that 

range from classical source-level debuggers to automated and dynamic analysis techniques. 

Second, this dissertation presents an extensible agent-based debugging architecture named IDEA 

(Idaho Debugging Extension Architecture). IDEA offers novel debugging techniques that break the 

rigidness, closeness, and inextensibility of most current debuggers. It provides programmers with the 

ability to easily implement, test, and combine user-defined debugging agents, and offers a simple 

dynamic and static extension mechanism. 

Finally, this dissertation provides a production source-level debugger for the Unicon language 

named UDB. UDB leverages the classical interactive debugging process with 1) built-in agents 

employing automatic detection and dynamic analysis techniques, 2) a simple interface to load, 

unload, enable, and disable separately-compiled dynamically-loaded external debugging agents that 

work in conjunction with the conventional source-level debugging session and its internal agents, and 

3) Dynamic Temporal Assertions (DTA) that assert a sequence of runtime properties. DTAs are 

introduced for the first time within typical source-level debuggers that targets sequential programs. 

While IDEA simplifies a source-level debugger’s extensibility and eases its usability, debugging 

agents add indispensable value with moderate impact on the performance of the debugger. Different 

agents can work in concert with each other to provide programmers with better understanding of the 

program’s execution behavior and simplify the process of debugging and hunting for elusive and hard 

to catch bugs. 



iii 

Curriculum Vita 

Ziad A. Al-Sharif 

Department of Computer Science 

University of Idaho 

Moscow, ID, 83844 

zsharif@gmail.com 

Future Address 

Department of Computer Science 

Jordan University of Science and Technology 

Irbid, Jordan, 22110 

P.O.Box 3030 

 

Education 

December 2009 

Doctor of Philosophy in Computer Science 

Department of Computer Science, University of Idaho, Moscow, ID, 83844 

GPA: 4.0 out of 4.0 

 

August 2005 

Master of Science in Computer Science 

Department of Computer Science, New Mexico State University, Las Cruces, NM, 88001 

GPA: 3.559 out of 4.0 

 

February 2000 

Bachelor of Science in Computer Science 

Department of Computer Science, AL al-Bayt University, Mafraq, Jordan 

GPA: 81.15% (very good) 

Ranked second among my peers in the graduation ceremony of 2000 

 

 

Publications 

Journal Articles 

1. Ziad Al-Sharif and Clinton Jeffery, 2010. UDB: An Agent-Oriented Source-Level Debugger. 

To appear in the International Journal of Software Engineering (IJSE), Vol. 3, No. 1, January 

2010. 

 

 



iv 

Conference Papers 

1. Ziad Al-Sharif and Clinton Jeffery, 2009. Language Support for Event-Based Debugging. In 

Proceedings of the 21st International Conference on Software Engineering and Knowledge 

Engineering (SEKE 2009), Boston, July 1-3, 2009. pp. 392-399. (Acceptance rate 38%). 

2. Ziad Al-Sharif and Clinton Jeffery, 2009. A Multi-Agent Debugging Extension Architecture. 

In Proceedings of the 21st International Conference on Software Engineering and Knowledge 

Engineering (SEKE 2009), Boston, July 1-3, 2009. pp. 194-199. 

3. Ziad Al-Sharif and Clinton Jeffery, 2009. An Agent Oriented Source-level Debugger on Top 

of a Monitoring Framework. In Proceedings of the Sixth International Conference on 

Information Technology: New Generations (Las Vegas, Nevada, April 27 - 29, 2009). ITNG. 

IEEE Computer Society. pp. 241-247. (Acceptance rate 29%). 

4. Ziad Al-Sharif and Clinton Jeffery, 2009. An Extensible Source-Level Debugger. In 

Proceedings of the 2009 ACM Symposium on Applied Computing (Honolulu, Hawaii, March 

9-12). SAC '09. pp. 543-544. (a 2 page abstract with poster). 

5. Hani Bani-Salameh, Clinton Jeffery, Ziad Al-Sharif, and Iyad Abu Doush. 2008. Integrating 

Collaborative Program Development and Debugging within a Virtual Environment. In 

Groupware: Design, Implementation, and Use: 14th International Workshop, CRIWG 2008. 

Omaha, NE, USA. September 14-18, 2008. Lecture Notes in Computer Science, vol. 5411. 

Springer-Verlag, pp. 107-120. 

6. Ziad Al-Sharif and Clinton Jeffery, 2006. Adding High Level VoIP Facilities to the Unicon 

Language. In Proceedings of the Third International Conference on Information Technology: 

New Generations (April 10 - 12, 2006). ITNG. IEEE Computer Society. pp.524-529. 

7. Clinton Jeffery, Omar El-Khatib, Ziad Al-Sharif, and Naomi Martinez, 2005. Programming 

Language Support for Collaborative Virtual Environments. In Proceedings of the 

International Conference on Computer Animation and Social Agents (CASA'05). 

Technical Reports 

1. Ziad Al-Sharif. Debugging with UDB 2.0: User Guide and Reference Manual. Unicon 

Technical Report #10, http://unicon.org/utr/utr10.pdf. December 2009. 

2. Ziad Al-Sharif, A High Level Audio Communications API for the Unicon Language, Master 

Thesis,  Department of Computer Science, New Mexico State University, August 2005. 

 



v 

Acknowledgment 

I would like to express my gratitude to all the people who helped me develop this dissertation. It 

has been a long road involving major research challenges and overcoming critical development 

obstacles. First, I would like to thank my major professor Dr. Clinton L. Jeffery, whom without this 

dissertation could not have been written.  He did not only serve as my supervisor but also encouraged 

and challenged me throughout my academic program. He never accepted less than my best efforts. I 

thank him for all his encouragement, patience, support, and knowledge. 

I also would like to thank my committee members: Dr. Robert Rinker, Dr. Robert Heckendorn, 

and Dr. Gregory Donohoe, who did not save any effort to provide valuable and constructive criticism 

about the presented research and the formatting of this dissertation. Their significant feedback guided 

me through the dissertation process; I would like to thank them all.  

I also would like to thank Dr. Phillip Thomas from the National Library of Medicine. Dr.  

Thomas was involved in this research from the beginning. He and his research group at the National 

Library of Medicine were benevolent to test the UDB debugger on their programs and report back 

with thoughtful feedbacks and suggestions. Dr. Thomas was kind enough to voluntarily read the early 

draft of this dissertation. He has provided me with significant enhancements. 

This research was supported by the National Library of Medicine Specialized Information 

Services Division, initially through an appointment to the National Library of Medicine Research 

Participation Program. This program is administered by the Oak Ridge Institute for Science and 

Education for the National Library of Medicine. I would like thank their endless support. Finally, I 

would like to thank the Department of Computer Science at Jordan University of Science and 

Technology (JUST) for their generous sponsorship, which allowed me to pursue my MS. and Ph.D. 

degrees. 

 

 

Ziad A. Al-Sharif 

December 1, 2009 

 

 

 



vi 

Table of Contents 

 

Authorization to Submit Dissertation i 

Abstract ii 

Curriculum Vita iii 

Acknowledgment v 

Table of Contents vi 

List of Figures xiv 

List of Tables xviii 

List of Equations xx 

 

Part I Introduction and Background ................................................................ 1 

Chapter 1 Introduction and Objectives ............................................................ 2 

1.1. Dissertation Scope ............................................................................................ 2 

1.2. Context and Motivation .................................................................................... 3 

1.3. The Problem ..................................................................................................... 4 

1.4. The Solution Approach Used in This Research ............................................... 5 

1.4.1. Debugging Framework ..................................................................................... 6 

1.4.2. Extension Architecture ..................................................................................... 7 

1.4.3. Very High Level Debugger .............................................................................. 8 

1.4.4. Extension Agents .............................................................................................. 9 

1.5. The Results ....................................................................................................... 9 



vii 

1.6. Definitions ...................................................................................................... 10 

1.7. Dissertation Outline ........................................................................................ 10 

Chapter 2 Background .....................................................................................13 

2.1. Program Bugs ................................................................................................. 13 

2.2. Runtime Bugs ................................................................................................. 15 

2.3. Debugging Terms ........................................................................................... 15 

2.4. Debugging Tools ............................................................................................ 19 

2.4.1. Architecture .................................................................................................... 20 

2.4.2. Implementation ............................................................................................... 21 

2.4.3. Interface .......................................................................................................... 21 

2.5. Debugging Process ......................................................................................... 22 

2.6. Debugging Process Architecture .................................................................... 23 

2.6.1. Local Debugging ............................................................................................ 24 

2.6.2. Remote Debugging ......................................................................................... 24 

2.6.3. Collaborative Debugging ................................................................................ 25 

2.6.4. Debugging Parallel and Distributed Systems ................................................. 26 

Chapter 3 Manual Debugging Tools and Techniques ...................................27 

3.1. In-Code Debugging ........................................................................................ 28 

3.1.1. Print Statements .............................................................................................. 28 

3.1.2. Assertions ....................................................................................................... 29 

3.2. Dynamic Source-Level Debugging ................................................................ 29 

3.2.1. Forward Debugging ........................................................................................ 29 

3.2.2. Bidirectional Debugging ................................................................................ 33 

3.2.3. Programmable Debugging .............................................................................. 35 

3.2.4. Trace-Based Debugging ................................................................................. 37 

3.2.5. IDE-Based Source-Level Debugging ............................................................. 38 

3.3. Model-Level Debugging ................................................................................ 39 

3.4. Summary ........................................................................................................ 39 



viii 

Chapter 4 Automatic Debugging Tools and Techniques ..............................41 

4.1. Static Debugging ............................................................................................ 42 

4.2. Abstract Debugging ........................................................................................ 43 

4.3. Dynamic Debugging....................................................................................... 44 

4.3.1. Model Based Software Debugging ................................................................. 44 

4.3.2. In-Process Debugging (Debugging Libraries) ................................................ 46 

4.3.3. Dedicated Debuggers ...................................................................................... 47 

4.4. Summary ........................................................................................................ 53 

Part II Event-Based Debugging Framework .................................................55 

Chapter 5 Alamo Monitoring Framework .....................................................56 

5.1. Unicon’s Co-Expression Type ....................................................................... 56 

5.2. Architecture .................................................................................................... 57 

5.3. Features .......................................................................................................... 58 

5.3.1. VM Instrumentation ....................................................................................... 58 

5.3.2. Dynamic Loading ........................................................................................... 58 

5.3.3. Synchronous Execution .................................................................................. 59 

5.3.4. In-process Execution Model ........................................................................... 59 

5.4. High-Level Execution Monitoring ................................................................. 60 

5.4.1. Event Masking ................................................................................................ 60 

5.4.2. Loading the Target Program ........................................................................... 61 

5.4.3. Activating the Target Program ....................................................................... 61 

5.5 Limitations ....................................................................................................... 62 

Chapter 6 AlamoDE: Alamo’s Extensions for Debugging Support ............63 

6.1. Virtual Machine Instrumentation ................................................................... 63 

6.2. Inter-Program Variable Safety ....................................................................... 64 

6.3. Syntax Instrumentation .................................................................................. 67 

6.4. High-Level Interpreter Stack Navigation ....................................................... 71 



ix 

6.5. Signal Handling .............................................................................................. 73 

Chapter 7 AlamoDE: The Debugging Framework .......................................75 

7.1. Debugging Events .......................................................................................... 75 

7.2. Event Filtering ................................................................................................ 77 

7.3. Execution State Inspection and Modification ................................................ 78 

7.3.1. Variables ......................................................................................................... 78 

7.3.2. Procedures and Stack Frames ......................................................................... 80 

7.3.3. Executed Source Code .................................................................................... 81 

7.4. Advanced Debugging Support ....................................................................... 81 

7.4.1. Multitasking .................................................................................................... 81 

7.4.2. Event Forwarding ........................................................................................... 81 

7.4.3. Custom Defined Debugging Tools ................................................................. 82 

Part III Very High Level Extension Mechanism ...........................................84 

Chapter 8 IDEA: A Debugging Extension Architecture ...............................85 

8.1. Debugging with Agents .................................................................................. 85 

8.2. Design ............................................................................................................. 86 

8.3. Implementation ............................................................................................... 86 

8.4. Source Code ................................................................................................... 87 

8.5. Extensions ...................................................................................................... 89 

8.5.1. Sample Agent ................................................................................................. 89 

8.5.2. External Agents .............................................................................................. 91 

8.5.3. Internal Agents ............................................................................................... 92 

8.5.4. Migration from Externals to Internals ............................................................ 93 

8.5.5. Simple Agent Migration Example .................................................................. 94 

Chapter 9 UDB: The Unicon Source-Level Debugger ..................................97 

9.1. UDB’s Debugging Features ........................................................................... 97 



x 

9.2. Design ............................................................................................................. 98 

9.3. Debugging Core ............................................................................................. 99 

9.3.1. Console ......................................................................................................... 101 

9.3.2. Session .......................................................................................................... 101 

9.3.3. Debugging State. .......................................................................................... 101 

9.3.4. Evaluator ....................................................................................................... 102 

9.3.5. Generators ..................................................................................................... 103 

9.3.6. Main Debugging Loop ................................................................................. 104 

9.4. Implementation ............................................................................................. 104 

9.4.1. Loading a Buggy Program ............................................................................ 106 

9.4.2. Breakpoints ................................................................................................... 106 

9.4.3. Watchpoints .................................................................................................. 107 

9.4.4. Tracepoints ................................................................................................... 110 

9.4.5. Stepping and Continuing .............................................................................. 111 

9.4.6. Stack Navigation .......................................................................................... 113 

9.4.7. Data Navigation/Modification ...................................................................... 113 

Part IV Extension Agents ...............................................................................114 

Chapter 10 UDB’s Advanced Debugging Agents ........................................115 

10.1. UDB’s Extensibility ................................................................................... 115 

10.2. Visualization Agent .................................................................................... 116 

10.3. Language-Specific Agents ......................................................................... 117 

10.3.1. Variable Changing Type (or Domain) ........................................................ 118 

10.3.2. Failed Expressions ...................................................................................... 118 

10.3.3. Redundant Conversion ............................................................................... 118 

10.4. Language-Independent Agents ................................................................... 119 

10.4.1. Data Related Agents ................................................................................... 119 

10.4.2. Behavior Related Agents ............................................................................ 120 

 



xi 

Chapter 11 DTA: Dynamic Temporal Assertions .......................................122 

11.1. Temporal Assertions .................................................................................. 122 

11.1.1. Temporal Logic .......................................................................................... 123 

11.1.2. Temporal Assertions vs. Ordinary Assertions ............................................ 123 

11.1.3. Temporal Assertions vs. Conditional Breakpoints ..................................... 125 

11.2. UDB’s DT Assertions ................................................................................ 126 

11.3. Debugging with DT Assertions .................................................................. 128 

11.3.1. Example #1: Loop Invariant ....................................................................... 129 

11.3.2. Example #2: Sequence of Variable States .................................................. 130 

11.3.3. Example #3: Variables’ State from Different Scopes ................................ 131 

11.4. Design ......................................................................................................... 132 

11.4.1. Temporal State ............................................................................................ 132 

11.4.2. Temporal Interval ....................................................................................... 132 

11.4.3. Assertion’s Evaluation ................................................................................ 134 

11.4.5. Evaluation Suite .......................................................................................... 136 

11.4.6. Temporal Assertions & Atomic Agents ..................................................... 137 

11.4.7. Evaluation Log ........................................................................................... 138 

11.5. Assertion Language .................................................................................... 139 

11.5.1. Syntax ......................................................................................................... 140 

11.5.2. Past-Time Operators ................................................................................... 141 

11.5.3. Future-Time Operators ............................................................................... 141 

11.5.4. All-Time Operators .................................................................................... 142 

11.6. Implementation ........................................................................................... 142 

11.7. Summary .................................................................................................... 143 

Part V Evaluation and Results ......................................................................145 

Chapter 12 Performance and Evaluation .....................................................146 

12.1. AlamoDE .................................................................................................... 146 

12.2. Alamo’s New Extensions ........................................................................... 150 



xii 

12.2.1. Trapped Variable Assignment .................................................................... 150 

12.2.2. Syntax Instrumentation ............................................................................... 150 

12.3. IDEA’s Evaluation ..................................................................................... 155 

12.3.1. Procedure Call vs. Co-Expression Context Switch .................................... 155 

12.3.2. Extension Agents ........................................................................................ 157 

12.3.3. Experiment ................................................................................................. 160 

12.4. UDB’s Evaluation ...................................................................................... 164 

12.5. DT Assertions Evaluation .......................................................................... 166 

12.5.1. Evaluation ................................................................................................... 167 

12.5.2. Challenges .................................................................................................. 170 

Chapter 13 Conclusion and Future Work ....................................................171 

13.1. Conclusion .................................................................................................. 171 

13.2. Discussion .................................................................................................. 174 

13.3. Limitations .................................................................................................. 175 

13.4. Future Work ............................................................................................... 176 

13.5. Extensibility to Other Languages ............................................................... 178 

Appendices .......................................................................................................179 

Appendix A: Dynamic Temporal Assertions ...............................................180 

A.1. Past-Time Assertions ................................................................................... 180 

A.1.1. Past-Time Temporal Logic Operators ......................................................... 180 

A.1.2. Example of Past-Time Assertions ............................................................... 180 

A.2. Future-Time Assertions ............................................................................... 181 

A.2.1. Future-Time Temporal Logic Operators ..................................................... 181 

A.2.2. Example of Future-Time Assertions ............................................................ 181 

A.3. All-Time Assertions .................................................................................... 182 

A.3.1. All-Time Temporal Logic Operators ........................................................... 182 

A.3.2. Example of All-Time Assertions ................................................................. 182 



xiii 

Appendix B: Evaluation and Performance ..................................................183 

B.1. Experimental Programs ............................................................................... 183 

B.2. Experimental Modes .................................................................................... 184 

B.3. Monitored Events......................................................................................... 184 

B.4. Average Monitored Events (E_Deref, E_Line, E_Syntax, E_Pcall) ...... 192 

Appendix C: UDB Command Summary ......................................................194 

C.1. Essential Commands .................................................................................... 194 

C.2. What to Do after a Crash ............................................................................. 194 

C.3. Starting UDB ............................................................................................... 194 

C.4. Stopping UDB ............................................................................................. 195 

C.5. Getting Help ................................................................................................. 195 

C.6. Executing a Program.................................................................................... 195 

C.7. Breakpoints .................................................................................................. 195 

C.8. Watchpoints ................................................................................................. 196 

C.9. Tracepoints .................................................................................................. 198 

C.10. Program Stack ............................................................................................ 200 

C.11. Execution Control ...................................................................................... 200 

C.12. Display and Change Data .......................................................................... 200 

C.13. Source Files and Code Info ....................................................................... 201 

C.14. Memory Usage........................................................................................... 202 

C.15. Shell Commands ........................................................................................ 203 

C.16. Extension Agents ....................................................................................... 203 

C.17. Temporal Assertions .................................................................................. 203 

Bibliography ....................................................................................................205 

 



xiv 

List of Figures 

 

Figure 1.1. Dissertation’s Contributions ................................................................................................ 5 

Figure 1.2. Dissertation Outline ........................................................................................................... 12 

Figure 2.1. Sample Semantic Bug ........................................................................................................ 14 

Figure 2.2. Debugging Techniques ...................................................................................................... 24 

Figure 3.1. Manual Debugging Tools and Techniques ........................................................................ 27 

Figure 3.2. An Example of Debugging Macros in C++ ....................................................................... 28 

Figure 4.1. Automatic Debugging Tools and Techniques .................................................................... 41 

Figure 5.1. Alamo’s Architecture ......................................................................................................... 57 

Figure 5.2. Sample Alamo Monitor ...................................................................................................... 61 

Figure 6.1. Trapped Variable Implementation ..................................................................................... 65 

Figure 6.2. Sample expression where assignment can be violated ....................................................... 66 

Figure 6.3. The New Data Structure Introduced for the Trapped Variable .......................................... 66 

Figure 6.4. The Allocation Macro Introduced for Trapped Variables .................................................. 66 

Figure 6.5. Unicon's Line/Syntax/Column Table ................................................................................. 67 

Figure 6.6. Sample Unicon Program .................................................................................................... 68 

Figure 6.7. Sample ucode Format Before and After the Syntax Instrumentation ................................ 69 

Figure 6.8. Sample Syntax Monitor ..................................................................................................... 70 

Figure 6.9. Sample Stack Trace ............................................................................................................ 72 

Figure 6.10. Sample Procedure that Backtraces the Current Stack ...................................................... 73 

Figure 6.11. Sample Monitor Program Using the E_Signal Event ..................................................... 74 

Figure 7.1. Sample AlamoDE Debugging Loop .................................................................................. 77 

Figure 7.2. AlamoDE’s Architecture .................................................................................................... 78 

Figure 7.3. Sample Monitor Using the event mask and value mask ..................................................... 79 

Figure 7.4. Assigning Variables in the Buggy Program ....................................................................... 80 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565306
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565307
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565308
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565309
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565310
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565311
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565312
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565313
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565314
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565315
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565316
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565317
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565318
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565319
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565320
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565321
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565322
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565323
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565324
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565325
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565326
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565327
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565328
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565329


xv 

Figure 7.5. Modifying Procedures in the Buggy Program ................................................................... 80 

Figure 7.6. AlamoDE Debugging Capabilities ..................................................................................... 82 

Figure 7.7. An AlamoDE Debugging Agent ........................................................................................ 83 

Figure 8.1. IDEA's Architecture ........................................................................................................... 87 

Figure 8.2. IDEA's UML Diagram ....................................................................................................... 88 

Figure 8.3. An IDEA-based Agent Prototype....................................................................................... 90 

Figure 8.4. IDEA’s on-the-fly Extensions (External Agents)............................................................... 91 

Figure 8.5. IDEA’s Internal Extensions (Internal Agents) ................................................................... 92 

Figure 8.6. Sample Migrated Agent ..................................................................................................... 94 

Figure 8.7. Explicit Agent Registration ................................................................................................ 95 

Figure 9.1. Sample UDB Debugging Session ...................................................................................... 98 

Figure 9.2. UDB’s Debugging Architecture ......................................................................................... 99 

Figure 9.3. UDB's UML Diagram ...................................................................................................... 100 

Figure 9.4. UDB’s Main Debugging Loop ......................................................................................... 105 

Figure 9.5. UDB’s Implementation for Breakpoints .......................................................................... 106 

Figure 9.6. UDB’s Implementation for Watchpoints Check .............................................................. 108 

Figure 9.7. Initiating a Next Command .............................................................................................. 112 

Figure 9.8. Implementing Next within the Evaluator ......................................................................... 112 

Figure 10.1. UDB's on-the-fly Visual Extensibility ........................................................................... 117 

Figure 11.1. A DT Assertion over Two Live Procedures ................................................................... 124 

Figure 11.2. A DT Assertion over Two Sibling Functions ................................................................ 125 

Figure 11.3. Sample Factorial Program Written in Unicon ................................................................ 127 

Figure 11.4. Sample UDB Session that Uses DT Assertions ............................................................. 127 

Figure 11.5. Using Temporal Assertions to Check Loop Invariant .................................................... 129 

Figure 11.6. Using Temporal Assertions to Validate Infinite Loops ................................................. 130 

Figure 11.7. Using Temporal Assertions to Check Variables from Various Scopes.......................... 131 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565330
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565331
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565332
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565333
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565334
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565335
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565336
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565337
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565338
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565339
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565340
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565341
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565342
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565343
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565344
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565345
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565346
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565347
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565348
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565349
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565350
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565351
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565352
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565353
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565354
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565355


xvi 

Figure 11.8. Temporal Assertions: Scope & Interval ......................................................................... 133 

Figure 11.9. Temporal Assertions Evaluation .................................................................................... 134 

Figure 11.10. Sample Temporal Assertion’s Evaluation .................................................................... 135 

Figure 11.11. Sample Evaluation of Various Temporal Assertions ................................................... 135 

Figure 11.12. Sample of Different DT Assertions .............................................................................. 138 

Figure 11.13. UDB’s Temporal Assertions Syntax ............................................................................ 140 

Figure 11.14. UDB’s Temporal Assertions UML Diagram ............................................................... 144 

Figure 12.1. Execution Time- Standalone vs. Monitored Mode ........................................................ 149 

Figure 12.2. E_Deref, E_Line, E_Syntax, & E_Pcall Events Ratio to all Other Events ............... 152 

Figure 12.3. The Percentage Increase in the Size of the Object Code File ........................................ 153 

Figure 12.4. The Percentage Increase in the Size of the Executable Program ................................... 153 

Figure 12.5. The Percentage Increase in Compile/Link Times .......................................................... 154 

Figure 12.6. Time of Procedure Calls vs. Context Switches .............................................................. 155 

Figure 12.7. Sample Unicon Program Measures Procedure Calls vs. Co-Expression ....................... 156 

Figure 12.8. IDEA’s Use of Debugging Agents ................................................................................. 159 

Figure 12.9. Sample Agent Counter ................................................................................................... 161 

Figure 12.10. The Average Time for the Experimental Agent in Seconds ........................................ 163 

Figure 12.11. IDEA's Extension Techniques ..................................................................................... 164 

Figure 12.12. IDEA’s Extension Agents vs. Standalone Mode ......................................................... 164 

Figure 12.13. The Performance of UDB's Various Debugging Features ........................................... 166 

Figure 12.14. State Based vs. Interval Based Evaluation ................................................................... 168 

Figure 12.15. Sample Unicon Program Used to Measure Time of Temporal Assertions .................. 168 

Figure 12.16. Temporal Assertions Evaluation Time......................................................................... 169 

Figure 13.1. Dissertation Contributions ............................................................................................. 173 

Figure B.1. rsg Average Execution Time .......................................................................................... 185 

Figure B.2. rsg Reported Events ........................................................................................................ 185 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565356
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565357
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565358
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565359
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565360
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565361
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565362
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565363
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565364
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565365
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565366
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565367
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565368
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565369
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565370
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565371
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565372
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565373
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565374
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565375
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565376
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565377
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565378
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565379
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565380
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565381


xvii 

Figure B.3. genqueen Average Execution Time .............................................................................. 186 

Figure B.4. genqueen Reported Events ............................................................................................ 186 

Figure B.5. scramble Average Execution Time ................................................................................ 187 

Figure B.6. scramble Reported Events ............................................................................................. 187 

Figure B.7. ichartp Average Execution Time .................................................................................... 188 

Figure B.8. ichartp Reported Events ................................................................................................. 188 

Figure B.9. igrep Average Execution Time ....................................................................................... 189 

Figure B.10. igrep Reported Events ................................................................................................... 189 

Figure B.11. miu Average Execution Time ....................................................................................... 190 

Figure B.12. miu Reported Events ..................................................................................................... 190 

Figure B.13. pargen Average Execution Time ................................................................................. 191 

Figure B.14. pargen Reported Events ............................................................................................... 191 

Figure B.15. Average Time of all Events ........................................................................................... 193 

Figure B.16. Average of E_Deref, E_Pcall, E_Line, and E_Syntax Events .................................. 193 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565382
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565383
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565384
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565385
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565386
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565387
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565388
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565389
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565390
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565391
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565392
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565393
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565394
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565395


xviii 

List of Tables 

 

Table 3.1. Manual Debugging Tools and Techniques .......................................................................... 40 

Table 4.1. Automatic Debugging Tools and Techniques ..................................................................... 54 

Table 6.1. Syntax Events and Codes .................................................................................................... 68 

Table 6.2. Unicon's Debugging Related Keywords .............................................................................. 71 

Table 9.1. UDB's Default Monitor Events ......................................................................................... 103 

Table 9.2. UDB's Tracepoints ............................................................................................................ 111 

Table 10.1. Atomic Data Related Agents ........................................................................................... 120 

Table 10.2. Execution Behavior Related Agents ................................................................................ 121 

Table 11.1. UDB’s DT Assertions Evaluation Action Operators ....................................................... 136 

Table 11.2. UDB’s DT Assertions Evaluation Log ............................................................................ 138 

Table 11.3. UDB’s DT Assertions Evaluation Log ............................................................................ 139 

Table 11.4. DTA Temporal Logic Operators ..................................................................................... 139 

Table 12.1. AlamoDE No Mask vs. Event Mask vs. Value Mask ..................................................... 148 

Table 12.2. Syntax Instrumentation Effects on Object-Code (ucode) Formats .................................. 153 

Table 12.3. Syntax Instrumentation Effects on Executable (bytecode) Formats ............................... 153 

Table 12.4. Syntax Instrumentation Effects on Compiling/Linking Time ......................................... 154 

Table 12.5. Performance of IDEA’s Extension Agents ...................................................................... 162 

Table 12.6. The Time of Different UDB Debugging Features ........................................................... 165 

Table 12.7. Evaluation Time of Temporal Assertions ........................................................................ 169 

Table B.1. rsg Execution Time .......................................................................................................... 185 

Table B.2. genqueen Execution Time .............................................................................................. 186 

Table B.3. scramble Execution Time ............................................................................................... 187 

Table B.4. ichartp Execution Time .................................................................................................... 188 

Table B.5. igrep Execution Time ....................................................................................................... 189 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565398
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565400
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565401
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565402
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565403
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565404
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565405
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565406
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565407
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565408
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565409
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565410
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565411
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565412
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565413
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565414
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565415
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565416
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565417
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565418
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565419


xix 

Table B.6. miu Execution Time ......................................................................................................... 190 

Table B.7. pargen Execution Time ................................................................................................... 191 

Table B.8. The Average Monitoring Time of All Events ................................................................... 192 

Table B.9. Number of Reported Events ............................................................................................. 192 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565420
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565421
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565422
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565423


xx 

List of Equations 

 

Equation 12.1. Number of Context Switches (E Events Reported to n Agents) ................................ 157 

Equation 12.2. Cost of Forwarding an Event to n Agents using Context Switches ........................... 157 

Equation 12.3. Total Cost of Forwarding E Events to n Agents using Context Switches ................. 157 

Equation 12.4. Cost of Reporting an Event to an Agent in Standalone Mode ................................... 158 

Equation 12.5. Total Cost of Reporting an Event to n Agents in Standalone Mode .......................... 158 

Equation 12.6. The Cost of Reporting an Event to n Agents Using Procedure Calls ........................ 158 

 

 

 

 

 

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565424
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565425
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565426
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565427
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565428
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565429


1 

 

Part I 

Introduction and Background  
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Chapter 1  

Introduction and Objectives 

The growth in the software industry is rapid and the size of programs is becoming larger and 

larger. In contrast, the rate of advances in the debugging literature is relatively slow. Most debuggers 

are well suited for a specific class or set of bugs. Program bugs can be caused by numerous 

circumstances and revealed long after their root cause. Understanding the source code and the 

execution behavior of the program is essential to locate and find the cause of most bugs. This 

understanding can be achieved by different means; one is to employ different debugging tools that 

capture, depict, analyze, and investigate the state of the program at, and in between, different points 

of execution. In practice, a programmer often tries more than one debugging tool on the same bug 

before it is caught. 

1.1. Dissertation Scope 

Various debugging tools and techniques are available. They range from reviewing the source 

code and utilizing print statements to using special purpose bug detectors. The research in this 

dissertation is focused on two kinds of debuggers and their extensibility. First is the typical interactive 

source-level debugger, which is one of the most valuable debugging tools, but it relies heavily on the 

user’s ability to conduct a live test. It helps programmers locate and find bugs by stepping through the 

source code and examining the current state of execution. It provides techniques such as breakpoints, 

watchpoints, single stepping and continuing, and navigating the call stack. Such techniques are good, 

but they are not always successful in enabling the programmer to locate or to understand the cause of 

a bug. For instance, a class variable may be assigned a bad value in a method that is not on the stack 

when a bug that causes a crash or a core dump is revealed. A user can investigate the current state. If 

there is no evidence of the bug’s root cause, he/she may restart the execution hoping to stop at an 

earlier point where the cause of the bug is still accessible [1]. These source-level debuggers suffer 

from various limitations such as: 

1. Limited information provided about the execution history 

2. Lack of automated and dynamic analysis-based debugging techniques 

3. Limited features that are restricted to the commands prescribed in the debugger’s manual  

4. Closed architecture that provides little or no cooperation with external debugging tools. 
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Second are the post-mortem reversible debuggers (also known as trace-based debuggers), which 

provide debugging techniques based on the ability to browse forward and backward through the states 

of a completed execution. This approach provides outstanding debugging capabilities such as finding 

where and why some action has happened. For instance, if the buggy program produces an incorrect 

result, it is possible for the programmer to step backwards on the faulty output and find the improper 

value at each point until the root cause of the bug is revealed. On the contrary, if the program fails to 

produce the output, then the programmer has no handle on the bug to trace backwards. Most of these 

trace-based debuggers incur serious limitations such as: 

1. A post-mortem debugging process that requires the ability to trace the completed execution 

state before they allow a user to investigate 

2. Formidable scalability problems that are induced by the huge volume of trace data 

3. Good at finding some types of bugs and not others 

4. Neglect common debugging techniques such as altering the state of the program being 

debugged. A debugging process may include modifying the state of the buggy program in 

order to test ―what if” kind of hypotheses. 

1.2. Context and Motivation  

The research presented in this dissertation targets the Unicon programming language [3, 4]. 

Unicon is an object-oriented dialect of Icon [6, 7], a very high level imperative programming 

language with dynamic and polymorphic structure types, along with generators and goal-directed 

evaluation.  

This dissertation is motivated by two objectives. First, historically, the Icon language community 

had no formal debugging tool, only a built-in trace facility. A rationale for this was that the very high 

level nature of Icon reduces the need for conventional debugging because Icon programs are shorter 

than they are in conventional languages. However, Unicon programs are often much larger than was 

common for Icon. Even in a very high level programming language, programmers write bugs and the 

debugging process is still difficult and time consuming. Also, very high level languages’ advanced 

features may introduce special kinds of bugs and create special needs for debugging tools and 

techniques. 

Furthermore, the cost of writing debugging tools is typically very high, which plays a significant 

role in the slow rate of improvement seen in the debugging literature. This motivates the second 

objective, which is to build underlying debugging facilities that simplify and reduce the cost of 
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writing debugging tools. Such infrastructure should permit easy experimentation with new debugging 

techniques that might become standard features in future debuggers. These two objectives take 

advantage of the Alamo framework, an event-driven monitoring framework developed originally to 

support visualization of Icon and Unicon program behavior. For this dissertation, Alamo has been 

extended with new features to enable debugging support. The result of these extensions is called 

AlamoDE. 

1.3. The Problem 

Different programmers and bugs require different debugging techniques. Often, bugs are 

revealed long after their root cause. Whenever a bug is discovered, a programmer tries to find a 

debugging tool or technique that suits its revealed behavior. However, often a debugger becomes 

useless when a situation arises that is not supported by its commands. At the same time, it is not 

feasible to provide all debugging techniques in one tool. 

Sometimes, it is useful to utilize various debugging tools on the same bug and compare their 

outcome in order to better understand a bug’s root cause. In these situations, working synchronously 

with more than one debugging tool on the same bug can speed up the debugging process. Instead of 

operating different debugging tools side by side, the programmer may benefit from running them all 

within the same session, allowing simpler interactions and collaborations between the tools. This 

capability has potential value, but requires underlying support for various debugging tools and 

techniques to work in concert with each other, which may entail extending a debugging tool with new 

techniques or integrating the features of one debugging tool into another. This extensibility may result 

in better debugging tools and reduce the user’s search for various techniques. However, this 

extensibility is rarely supported. When it is applicable, it is difficult and time consuming. It requires 

sufficient knowledge and high level programming skills. 

A solution to this problem can be reached by two levels of support. First, there is a need to 

simplify the process of developing new debugging tools and techniques, which may aim at improving 

the value of an existing tool by developing and integrating new techniques, or derive the innovations 

for new debugging mechanisms. Second, there is a need to simplify the extensibility of various 

debugging tools and techniques.   
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1.4. The Solution Approach Used in This Research 

Simplifying the experimentation is essential for advances in future debuggers. The research 

conducted in this dissertation is focused on advancing the debugging state of the art by facilitating the 

extensibility of a typical interactive source-level debugger with custom-defined trace-based 

debugging and dynamic analysis techniques, which aim at improving its conventional debugging 

process.  

The approach provides a debugging suite that consists of four primary contributions; see 

Figure 1.1. First, it provides an underlying high level virtual machine support for various debugging 

tools. Second, it presents a debugging extension architecture that simplifies the process of extending a 

source-level debugger with new debugging features, called agents. Third, it introduces a production 

Figure 1.1. Dissertation’s Contributions 
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grade source-level debugger, named UDB, which utilizes both of the high level debugging support 

and the extension architecture. Finally, it provides a set of experimental extensions. These extensions 

introduce temporal assertions for the first time in a typical interactive debugger that debugs sequential 

programs. These four contributions are introduced in the following four sub-sections and discussed in 

detail through this dissertation. 

1.4.1. Debugging Framework 

The first contribution of this dissertation is an event-based debugging framework named 

AlamoDE (Alamo—Debug Enabled), see Chapters 5-7. This framework provides a high level 

abstraction mechanism that reduces the cost of writing a variety of debugging tools—including 

source-level debuggers and custom-defined debugging tools.  This simplifies and speeds up the 

process of experimenting with new debugging techniques such as automatic debugging, dynamic 

analysis, and visualization tools. It encapsulates goals that include: 

1. Reduce the development cost of debugging tools  

2. Facilitate all the usual capabilities of classical debuggers 

3. Support the creation of advanced debugging features such as automatic debugging, and 

dynamic analysis techniques 

4. Debug novel language features such as generators, goal-directed evaluation, and string 

scanning 

5. Support for runtime information sharing between various debugging tools through execution 

events 

AlamoDE is general enough to support different kinds of debugging tools that range from 

classical source-level debuggers to automatic and dynamic analysis tools. It is a debugging 

framework that adds to the original Alamo framework: 

1. Debugging-oriented virtual machine instrumentation 

2. Additional execution state inspection and source code navigation 

3. The ability for debugging tools to safely change the execution state of the buggy program by 

assigning to its variables and procedures. 
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1.4.2. Extension Architecture 

The second contribution of this dissertation is an agent-oriented debugging extension 

architecture named IDEA (Idaho Debugging Extension Architecture), see Chapter 8. IDEA sits on top 

of AlamoDE to further elevate the debugging support through its novel extension mechanism. It 

simplifies and speeds up the process of experimenting with new AlamoDE-based debugging 

techniques and visualization tools within a typical interactive debugging session. Experiments are 

plugged in to the debugger allowing various debugging tools and techniques to work in concert with 

each other on the same buggy program. Different tools work and hunt for the root cause of a bug 

simultaneously and under the extended debugging session. 

IDEA’ extensibility allows different debugging tools to be written and tested as standalone tools 

and then loaded into a debugger without modification. These debugging tools play the role of agents 

in a source-level debugger. IDEA supports two types of extensions that distinguish it from other 

architectures: 

1. Dynamic extension on the fly during the debugging session (external agents). This facilitates 

on the fly debugging extensions and cooperation between various debugging tools 

2. Formal steps for migrating and adopting standalone agents as permanent debugging features 

(internal agents). 

IDEA’s extensions are in-process debugging agents that are used simultaneously through a 

mixture of co-expression context switches, inter-program procedure calls, and in-program procedure 

calls. Those agents are event-driven task-oriented program execution monitors. Each agent monitors a 

program’s execution for custom runtime events; an event is an action during the execution of the 

program such as a method being called or a major syntax construct being entered. An agent may 

employ events, event-sequences, and event-patterns to detect specific execution behaviors. Different 

agents perform different debugging missions such as detecting a suspicious execution behavior, 

performing an automatic debugging procedure, or executing a dynamic analysis technique. Each 

agent receives different runtime events based on its request. IDEA’s central debugging core 

coordinates all agents. Each agent:  

1. Provides the debugging core with its set of desired events 

2. Receives relevant events from the debugging core 

3. Performs its debugging mission, which may utilize execution history prior to the current 

execution state, and 
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4. Presents its analysis results back to the debugging core, another agent, or directly to the end-

user. The external debugging agents’ standard inputs and outputs are redirected and 

coordinated by IDEA’s debugging core. 

1.4.3. Very High Level Debugger 

The third contribution of this dissertation is a production source-level debugger for the Unicon 

[3, 4] programming language named UDB, see Chapter 9. UDB is built on top of AlamoDE 

framework and utilizes the IDEA architecture. It validates this framework and proves the usefulness 

of the extension architecture. It combines the capabilities of classical and trace-based debuggers and 

provides a friendly experimentation environment for various debugging tools and techniques to work 

in concert with each other. UDB is not limited to classical debugging techniques such as those found 

in GDB [5]. Extensions can use advanced debugging techniques, such as agents that implement 

automatic debugging or dynamic analysis techniques that may utilize information prior to the current 

execution state. Any number of external and internal debugging agents can synchronously assist in 

locating bugs. UDB suspends all agents whenever a breakpoint or watchpoint is reached, and it 

resumes them whenever the buggy program is resumed. 

Unlike common dynamic analysis tools that have to be linked in advance into the source code of 

the buggy program, or initialized at the start of the host debugger, UDB’s agents can be loaded and 

managed on the fly during a typical source-level debugging session. The user does not need to restart 

the debugging session whenever a decision is made to incorporate any of these agents, unless the 

agent requires information about previously executed properties. Agents that are loaded in the middle 

of a debugging session are not able to analyze execution properties prior to their loading point.  

UDB’s extension agents are written and tested as standalone tools, and then incorporated into the 

debugger via dynamic loading or linked into the debugger executable with almost no source code 

alterations. Since UDB’s extension agents are programmable in the same target language, UDB 

enables experienced users to write and test their own debugging tools as standalone programs and 

then use them as externals, or incorporate them as internals—built-in debugging features. 

Furthermore, UDB’s interactive user interface resembles GDB’s interface. This provides familiarity 

and ease of use for programmers who switch between languages frequently. UDB adds a handful of 

simple but general commands to load, unload, enable, and disable its extension agents. This simplifies 

the extensibility especially for typical users and novice programmers who may want to benefit from 

existing agents.  
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1.4.4. Extension Agents 

The final contribution of this dissertation is a set of extension agents that validates the 

extensibility and the usefulness of the IDEA architecture. These extensions are used within UDB’s 

interactive debugging session, see Chapter 10. The set of extension agents is divided into 

1) language dependent agents, 2) language independent agents, and 3) temporal logic operators. The 

agents of temporal logic operators are used to provide Dynamic Temporal Assertions (DTA), see 

Chapter 11. These DTA’s are logical expressions used to validate relationships (a sequence of 

execution states) that may extend over the entire execution and check information beyond the current 

state of evaluation. The temporal logic operators are internal agents used within the IDEA 

architecture. Those agents can reference other atomic agents. This collaboration between agents can 

provide a helpful debugging technique and prove the value of the IDEA architecture. 

1.5. The Results 

An AlamoDE-based debugging tool must use different approaches to implement features found 

in similar standard debugging tools, and faces potential performance challenges. In compensation, 

this type of implementation greatly simplifies the process of experimenting with new debugging 

techniques that probably would not be undertaken if the implementation was limited to the low level 

approaches found in other debuggers. This dissertation tests the following hypotheses:   

1. The AlamoDE event-based debugging framework is sufficient to support various debugging 

tools and techniques, including typical source-level debugging functionalities, with sufficient 

performance for production use. 

2. AlamoDE’s in-process debugging support allows for efficient and complex communication 

patterns between the debugger and the buggy program. These communications are facilitated 

by a mixture of event monitoring and high level primitives.  

3. An AlamoDE source-level debugger can surpass ordinary debuggers with more debugging 

capabilities. 

4. AlamoDE enables low-cost development of debugging tools, and the IDEA architecture 

allows AlamoDE tools to be extended easily. AlamoDE-based debugging tools are written in a 

high level language with no low level or hardware specific code.  

5. IDEA simplifies a typical source-level debugger’s extensibility with on the fly agents that 

utilize automatic debugging and dynamic analysis techniques. These extensions require no 
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special compilation, no source code or object modification, and no pre-initialization or any 

knowledge of the host debugger internal implementation. 

Also, this AlamoDE debugging framework and the IDEA extension architecture, both simplify 

the process of experimenting with new custom-defined debugging tools and techniques. This 

experimentation includes: 

1. Improvement to traditional techniques such as watchpoints and tracepoints 

2. The ability to integrate verification and validation techniques such as dynamic temporal 

assertions 

3. The simplicity to develop, test, and integrate new techniques of debugging agents.  

1.6. Definitions 

A number of terms and phrases used throughout this dissertation require some explanation. The 

terms monitor and monitor program denote a program that performs execution monitoring on another 

program. In this dissertation, these terms represent a debugger or a debugging tool. The terms 

monitored, monitored program, subject program, target program, and buggy program all represent 

the program being monitored and debugged. The term agent represents ―a program that performs 

some information gathering or processing task in the background. Typically, an agent is given a very 

small and well-defined task‖ [118]. A debugging agent is a special agent that performs an event-

driven task-oriented program execution monitor. The term monitoring framework represents the 

underlying support and the public API for event-based execution monitoring. The term debugging 

framework represents the underlying support and the public API for event-based debugging; some 

runtime events are used to control the execution of the buggy program while others are used to obtain 

information about its execution state. This framework allows programmers to write a variety of 

debugging tools in a very high level language. Finally, the term debugging architecture represents the 

structural design of a debugging tool, such as a source-level debugger. 

1.7. Dissertation Outline 

This dissertation consists of five major parts. Part I gives research background and investigates 

various debugging tools and techniques. Chapter 2 gives a general introduction to the field of 

debugging. Chapters 3 and 4 present a debugging literature survey, where different manual and 

automatic debugging tools and techniques are discussed in terms of their features, pros, and cons.  
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Part II presents a detailed discussion of the dissertation’s first major contribution named 

AlamoDE; an event-based debugging framework. Chapter 5 presents the Alamo monitoring 

framework that was originally designed to support software visualization [106,107,108]. Alamo is the 

related work that constitutes the starting point for this dissertation. This chapter only presents 

Alamo’s features that are adequate for debugging needs. Chapter 6 presents extensions to the Alamo 

framework developed for this dissertation in order to support debugging. It describes the 

implementation of these extensions within Unicon’s virtual machine and its runtime system in order 

to facilitate high level debugging support. Chapter 7 presents AlamoDE, a debugging framework that 

features event-driven debugging support integrated within a high level programming language. This 

chapter covers existing features from the Unicon language and the Alamo framework along with new 

extensions. The combination provides very high level debugging support, which enables 

programmers to develop new debugging tools and techniques in less effort and time. 

Part III presents a very high level extension mechanism. Chapter 8 introduces the IDEA 

architecture, which enables API compliant debugging tools to be loaded under the control of a source-

level debugger. Chapter 9 discusses the design and implementation of UDB and its built-in debugging 

techniques. UDB is an event-driven source-level debugger with exceptional extensibility. 

Part IV presents extension agents. Chapter 10 discusses various kinds of agents used in UDB 

under its IDEA architecture support. Chapter 11 introduces UDB’s Dynamic Temporal Assertions 

(DTA). DTAs are built on top of a set of predefined internal debugging agents that are integrated into 

UDB using the IDEA architecture. Within UDB, this set of special agents is used implicitly through a 

high level assertion language that allows users to dynamically assert execution properties across 

different execution states. DTAs are inserted into the debugging session from within the UDB console 

based interface.   

Part V presents the results found by this dissertation. Chapter 12 provides a performance 

evaluation for AlamoDE and IDEA architecture, all within the UDB source-level debugger. Chapter 

13 presents the conclusion and future work.  

This dissertation includes a set of appendices. Appendix A shows a summary of DT assertions 

introduced in Chapter 11. Appendix B shows detailed information about the evaluation discussed in 

Chapter 12. Finally, Appendix C shows a command summary for the currently implemented features 

in UDB. 
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Chapter 2  

Background 

Debugging is essential for every software project; it is part of the edit-compile-link-debug 

development cycle [8]. Different debugging tools are available, each of which may implement 

different techniques that catch a particular kind or class of bugs. Some consider debugging an art [9], 

while others consider it a systematic science [10]. In either case, debugging is an active search for the 

real cause of a known bug [11] and the fixing of program faults. The debugging time depends on the 

bug, the way it is observed, the employed debugging tool, and the programmer’s skill. Some studies 

have found a significant positive correlation between the debugging rate and the programmer skill 

[11]. 

Most debugging literature, old and new, consistently asserts that debugging is a hard problem, 

which consumes a big percentage of the development time; this percentage often reaches over 50 

percent [12]. Additionally, debugging is emotionally difficult because it is a challenging problem, and 

because people dislike admitting that their program is buggy and requires debugging [9]. Kernighan 

and Plauger argued that ―Everyone knows that debugging is twice as hard as writing a program in the 

first place. So if you’re as clever as you can be when you write it, how will you ever debug it?‖ [13]. 

In contrast, some experiments found that programmers can debug their own programs faster and 

easier than they would debug programs created by others. This may relate to the difference in the 

debugging process; a programmer usually uses backward reasoning to debug his/her own program, 

while forward reasoning is often used to debug programs written by others [11]. On the contrary, 

others think that bugs are not hard to find. In this minority view, if the code is complicated enough 

that it obscures the bug, then the real bug is the design; this should be enough of an excuse to redesign 

and rewrite [14]. 

2.1. Program Bugs 

A program’s source code is composed of 1) syntactic pieces defined by the programming 

language in use, 2) modules and libraries defined by the design and implementation, and 3) semantics 

and behaviors that are defined by the requirements and specifications. In general, a bug is a mistake 

somewhere in the program’s development process; it may occur in any one or more of these 

categories. However, this dissertation considers only those circumstances when the requirements, 
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specifications, and design are bug free, and the bug is always in the implementation of the program’s 

source code. 

First, syntax related bugs are varied based on the language grammar. Each language has a 

grammar that defines what is valid and what is not. Most bugs in this category are usually a simple 

omission or duplicate symbol. Since syntax bugs are defined contingently based on each language, 

any violation of a language syntax rule may result in a syntax bug. The language’s compiler or 

interpreter usually catches those bugs very easily. 

Second, linking bugs are related to the program’s structure of modules and libraries. In order to 

debug a linking bug, a programmer needs insight about the relationship between modules and 

libraries, and how they are incorporated in the main program. Sometimes, the linker discovers these 

bugs during the linking phase of the build process. However, some programs may utilize dynamic 

linking, which may not link and validate the linked modules until they are used in the program at 

runtime. Another example can be seen in some dynamic languages that do not validate the linked 

modules until they are used. Either one can result in linking bugs during the execution. 

Finally, in some cases the semantics of a statement is buggy or ambiguous. For example, the if 

statement in Figure 2.1 is syntactically valid in the C language according to some compilers, but the 

condition always fails. Furthermore, the while loop in Figure 2.1 is syntactically valid, but the 

condition always fails too—perhaps the programmer intention was to write a for loop instead. Static 

analysis techniques may be used to catch similar suspicious expressions during compilation, which 

may warn the user about potential misuses or flag semantic errors. In general, semantic bugs are the 

most difficult to define, find, and locate. They may depend on the program requirements, 

specifications, design, or implementation. Usually, the program is heavily tested during the 

development process to reduce the probability of these bugs during actual use in released builds. 

Besides semantic bugs, this category has many names such as logical bugs, runtime bugs, or even 

software bugs.  

    ……… 

    if (x=0) { y = 1000; } 
    printf("y = %d ", y); 
    ………. 

    while (i=0, i < 10, i++) { 
         printf("i = %d ", i); 
         printf("\n"); 
    } 
    ……… 

Figure 2.1. Sample Semantic Bug 

 

 
? 

? 
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2.2. Runtime Bugs 

Runtime bugs are discovered during program’s execution. They can be introduced into the 

software during the: 1) initial implementation, 2) modification of an existing program feature, or 3) 

repair process of an existing bug [11]. Runtime bugs can be defined by capturing the difference 

between 1) the computed, observed, or measured values, and 2) the specified, correct, and 

theoretically true value. Another way to define a runtime bug is by capturing 1) the inconsistency 

between the base model and the target model, or 2) the inconsistency between the expected behavior 

and the actual behavior [11].  

Runtime bugs can be revealed as an incorrect or missing output, unexpected behavior, or as a 

program crash. Software bugs can be classified in terms of reproducibility and severity. The ability to 

reproduce the bug is the first step to debug it. Some bugs are reproducible deterministically while 

others are not. A deterministic bug is one that is revealed every time the program executes in a 

specific path; most of the time, those bugs are data dependent (input dependent) such as dereferencing 

a pointer. In contrast, a non-deterministic bug does not depend on the execution path; those bugs are 

harder to locate and find and are mostly related to memory corruption [15, 16]. In general, 

reproducing and finding the root cause of a bug is harder than fixing it. 

On the other hand, a bug’s level of severity may influence the urgency of fixing it, especially 

when it is combined with a high recurrence rate. A fatal bug is one that causes the program to crash or 

freeze. A non-fatal bug is one that may cause a missing or incorrect output or an unexpected behavior. 

A bug may be so infrequent that the user can afford to live with it, especially if it is non-fatal. In 

general, the name functional bug is given to any bug that may cause an incorrect or missing output, a 

non terminated execution, or an unexpected termination that might be caused by a crash or a core 

dump [17]. Often, specific execution behaviors can be checked in relation to the revealed functional 

bug. For example, many programmers neglect checking function return values, and pointers are often 

misused causing memory corruptions.  

2.3. Debugging Terms 

This appendix provides an overview of the most common terms related to debugging. Some of 

these terms may indicate a category or class of debugging techniques while others may represent a 

specific debugging tool. The following is in alphabetical order with a brief description for each term: 

Abstract Debugging utilizes abstract interpretation to debug programs prior to their execution. 

It is based on two types of assertions: 1) invariant assertions, and 2) intermittent assertions. The user 
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inserts assertions into the buggy program source code and the debugger treats any violation of those 

assertions as runtime errors [37, 38]. See Section 4.2. 

Algorithmic Debugging is a high level means of checking and fixing program correctness. This 

process may include two algorithms: 1) a diagnosis algorithm that identifies the bug in the program 

based on its incorrect behavior and 2) a bug correction algorithm that solves and fixes the already 

identified bug. It may utilize different static and dynamic analysis tools [11][114]. 

Automatic Debugging is any debugging tool or technique that employs a computer algorithm to 

either locate the cause of a bug, reduce the search space for the location of the bug, or reduce the set 

of inputs that induce the bug. This category contains a variety of debugging techniques, each of which 

is focused on specific kind or class of bugs [39]. See Chapter 4.  

Bidirectional Debugging is a special case of reversible debugging. It reverses or undoes the 

execution of parts of the buggy program. It may be achieved based on checkpoints taken 

automatically in correspondence to the debugger commands. The debugger supports two types of 

commands: forward and backward [1], see Section 3.3.2. 

Convergence Debugging is an automatic debugging technique that utilizes a set of test cases. It 

isolates different test cases based on their convergence on the root cause of the failure by analyzing 

the internal control and data flow of the failure test case [29], see Section 4.3.3.1. 

Declarative Debugging allows users to perform queries on the execution history and specific 

execution states [40]. It is a specific kind of programmable debugging. 

Delta Debugging is an automatic way of narrowing down the differences between a failure run 

and a successful run [22]. It is a fully automatic debugging technique that finds the simplest test case 

that generates the failure, and highlights the difference between a passing and failing test case. It 

consists of two algorithms: a simplification algorithm and an isolation algorithm [21, 41], see Section 

4.3.3.5. 

Event-Based Debugging is used to control and obtain information from the buggy program by 

means of execution events, which are activities during the execution of the target program such as 

method being called or a variable being assined. It has been used mostly to debug concurrent and 

parallel programs. It is also used in debugging sequential programs in debuggers such as Dalek [42, 

43] and JPDA [23]. 
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Goal Directed Debugging is a semi-automatic debugger for Microsoft Excel spreadsheets. It 

allows end-users to report expected cell values and the debugger provides suggestions. It is up to the 

user to apply, refine, or reject any of these suggestions [44]. 

Interactive Debugging is a debugging method that allows a user to perform live investigation of 

the execution states during the debugging session; whether it is before or after the occurrence of the 

bug [45]. 

Manual Debugging is any debugging tool or technique that depends heavily on the user’s ability 

to investigate and search for the bug and its location, see Chapter 3. 

Model-Based Software Debugging is the process of locating the place of defects in a program 

based on models generated automatically from the source code or the execution of the program. The 

generated (observed) model is compared against the intuitive or theoretical model. It is an application 

of Model Based Diagnosis [46], see Section 4.3.1. 

Omniscient Debugging is a post-mortem source-level class of debuggers that provide the ability 

to go backward in time through the ability to navigate the execution history [47, 48, 49, 50]. See 

Sections 3.3.4.1 and 3.3.4.2. 

On Demand Debugging is the process of starting a debugging session right after encountering a 

runtime error. The debugger can be attached to the faulty program automatically at the failure point, 

saving developers’ time. A developer does not need to rerun the application and reproduce the 

situation where the bug should occur again. In some situations, it is possible to fix the bug and resume 

the program’s execution [51]. 

Performance Debugging is a class of debugging tools that targets the complexity and the 

efficiency of the program. They are mostly used under the name of profilers. An example of this class 

of debuggers is gprof [52]. 

Post-Mortem Debugging is the process of debugging that allows the user to investigate the 

execution history of states after the occurrence of the bug or after the termination of the program’s 

execution [37, 38]. 

Record-Replay Debugging provides the ability to reproduce a bug encountered at the end-user 

site. Recorded information before the occurrence of the crash is sent to the developers, so they may 

deterministically replay and reproduce the bug in their environment by replaying the last several 

million instructions before the crash [33, 53], see Section 4.3.3.8. 
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Relative Debugging is a class of debuggers that target the process of debugging two different 

versions of the same program. It allows a user to compare the execution of two programs based on 

expected predefined associations. It may concurrently execute the two programs in order to verify the 

similarities and find any differences [54, 55], see Section 4.3.3.7. 

Reversible Debugging is a general debugging technique that provides the ability to reverse and 

undo the execution of the buggy program into some previous point. In practice, this kind of 

debugging encompasses many technical limitations, which may depend on the operating system and 

the target machine or architecture. Often, it depends on special hardware and operating system 

support [1, 56], see Section 3.3.2. 

Simulation Based Debugging performs live simulation of the execution of the buggy program 

[57]. It may simulate the hardware of the execution environment by means of virtualization to avoid 

any modification of the host operating system [115], or provide a synthetic CPU targeting specific 

predefined anomalies, which is the case in Valgrind [18, 58], see Section 4.3.3.11. 

Source-Level Debugging is a class of debuggers that provide the ability to debug a program’s 

execution on the level of its source code. Even though the execution is performed on the program’s 

machine level representation, the debugger should be able to provide the user with information in 

relation to the source code. It is also known as symbolic debugging because it provides users with 

symbolic information obtained from the source code such as variables and their values [10]. See 

Section 3.3. 

Statistical Debugging is an automatic debugging technique for finding and locating bugs in 

released software systems. It depends on collecting sparse real samples from large numbers of runs. 

Sampled data is analyzed to locate and find the cause of different real world bugs [15, 16, 59, 60], see 

Section 4.3.3.4. 

Trace-Based Debugging is the process of debugging the program using a tracing mechanism. 

The traced data can be collected by different means of instrumentation that can be as simple as print 

statements or as complex as dedicated instrumentation frameworks [61, 62], see Section 3.3.4. 

Visual Debugging is a class of debugging tools that includes visualization and animation for the 

sake of debugging. Visualization can be used to provide better understanding of complex results 

provided by the debugger such as a huge amount of traced data [63]. 
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2.4. Debugging Tools 

A debugging tool is any tool that is used to assist the user during the debugging process. Those 

tools include: 

1. Static analysis tools that check the buggy program source code for potential bugs 

2. Debugging libraries that are linked into the buggy program to perform some dynamic analysis 

checking, such as memory leak detection 

3. Tracers that specifically focus on a specific execution behavior such as a function call or a 

variable state 

4. Profilers that target the performance of an execution 

5. Interactive and post-mortem source-level debuggers that provide users with the ability to 

investigate the execution state of the buggy program 

6. Algorithmic and automatic debugging tools that target the program’s source code, its 

execution behavior, or its execution model.  

Dynamic debugging tools may change the behavior of the buggy program. This may be 

intentional, for example when a programmer changes a value in a debugger to see what will happen, 

or it may be unintentional. In practice, a runtime bug (especially non-deterministic bugs) may behave 

differently before and after the debugging tool is involved. Generally, debugging tools intrude on the 

buggy program space as a result of sharing resources such as memory; these effects are minimized in 

order to preserve the reproducibility of bugs. 

Some debugging tools are built as extensions on top of another debugger or debugging 

architecture. Rob Law [11] classified debugging tools in terms of generations in an analogy similar to 

the classification of programming languages: 

1. First generation: low-level debugging tools used to monitor and obtain information about the 

CPU and its registers and memory. The main drawback of this generation is that the debugger 

provides little or no resemblance between the source program and the memory instructions. 

This reduces their usability. 

2. Second generation: source-level debuggers that provide information in terms of program’s 

source code and the programming language in use. The user can use breakpoints and 

watchpoints to control the execution of the buggy program. 
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3. Third generation: debuggers that provide information beyond the correlation of execution to 

the source code. A debugger of this generation can make analysis and logical assumptions 

about the location and the root cause of the bug. This generation includes tools that may 

implement static and/or dynamic analysis techniques such as program-slicing algorithms. 

4. Fourth generation: knowledge-based debugging and intelligent tutoring systems that apply 

analysis techniques to identify and repair a bug. 

This classification provides little or no information about the implementation, advantages, 

disadvantages, usability, and the kind of analysis in use. A new classification based on the 

architecture of the debugging process is introduced in Section 2.9. Furthermore, Chapters 3 and 4 

present a classification for manual and automatic debugging tools and techniques. 

2.4.1. Architecture 

The form of communication between a debugging tool and its buggy program may impact the 

debugging process and limit the capabilities of the utilized debugging techniques. Some debugging 

tools facilitate their communications through an in-process scheme, while others depend on an inter-

process architecture. Each communication method has its own advantages and disadvantages. In 

particular, debugging tools with in-process communication may intrude on the buggy program space 

and change the bug behavior. This intrusion may add to the difficulty of the debugging process. 

However, in-process communication simplifies the implementation of complex interactions between 

the debugging tool and the buggy program. For example, often in-process debugging architectures 

provide a debugging tool with direct access to the space of the buggy program that may exclude or 

reduce the operating system overhead and its implications. 

In contrast, pipes, sockets, or even network protocols are used to facilitate inter-process 

communication between a debugging tool and its buggy program, or a debugging tool front-end and 

its backend. For example, DDD is a front-end debugger for GDB, DBX, and other console-based 

debuggers. DDD communicates with the underlying debugger through bidirectional pipes; see 

Section 3.3.1.7. As another example, the Java Debug Interface (JDI) can communicate with the Java 

Virtual Machine Tool Interface (JVM TI) using sockets, pipes, or shared memory. Usually, inter-

process communication reduces the buggy program intrusion problem. At the same time, it may 

introduce another layer of overhead, which may add to the debugging time through its delay on the 

various interactions during the debugging process. In general, the goals and features of a debugging 

tool justify its architectural design. For example, inter-process architectures are very important to 

facilitate remote debugging techniques. 
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2.4.2. Implementation 

Current debuggers implement one of three mechanisms for controlling and obtaining debugging 

information from a buggy program. First, trapped instructions are one of the oldest and most 

successful techniques found in classical debuggers such as GDB. This trapped instruction mechanism 

is an efficient breakpoint technique for interactive debugging sessions, but inefficient for conditional 

or automatic debugging techniques. This means it is efficient as long as the number of trapped 

instructions is infrequent enough that it does not delay the execution of the buggy program 

noticeably. This potential performance problem can be seen in GDB in many debugging scenarios 

[1], see Section 3.3.1. 

Second, event-based debugging is one of the most efficient debugging mechanisms for 

redundant programs that run on different processors in parallel. Most of the time, events are 

lightweight and easily transferred between different processes as messages or signals. This 

mechanism is adopted by the Java Platform Debugging Architecture (JPDA) [23] for debugging 

multi-threaded and sequential programs. JPDA is based on execution events that transfer between 

different processes through pipes, sockets, or even network protocols; the debugging tool and the 

buggy program are in different processes. Most of the time, JPDA’s events are hidden under a high 

level API of primitives and methods. In contrast, the AlamoDE debugging framework, presented in 

this dissertation, transfers lightweight events between in-process threads called co-expressions, see 

Chapters 5-7. Furthermore, AlamoDE-based debugging tools employ events directly without dealing 

with extra wrapper functions. 

Finally, different algorithmic and automatic debugging tools utilize various algorithms and 

automated techniques to reduce the human factor and speed up the debugging process. Some 

automatic debugging tools use static analysis techniques that are applied on the program source code 

to find potential runtime faults such as static slicing. Others operate on a subset of test cases such as 

Delta debugging presented in Section 4.3.3.5, or a specific dynamic analysis technique such as 

Valgrind presented in Section 4.3.3.11. 

2.4.3. Interface 

Debugging tools vary in their user interface and in the amount and form of information that each 

provides about the buggy program and its bug. Some tools are interactive and allow live investigation 

in the execution state, while others are post-mortem and provide execution history navigation 

mechanisms. Recently, a new debugging interface paradigm emerged that employs natural language 

questioning during an interactive investigation process. This new debugging interface allows a user to 
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provide the debugger with questions about the execution of the buggy program, such as why did? and 

why did not?. This new interface is introduced in a debugger called Whyline [24, 25]. Whyline has 

two different implementations: the first targets the Alice framework [26] and the other is for Java 

programs [27, 28], see Section 4.3.3.9.  

In general, some debugging tools provide console-based debugging with character-based 

commands such as GDB. In GDB, commands are used to control and investigate the buggy program’s 

execution state. In contrast, visual debugging tools provide GUI interfaces where conventional 

commands are replaced with mouse pointing and clicking. For example, DDD provides a remarkable 

front-end GUI-based interface for GDB; it hides GDB’s commands under GUI buttons. Furthermore, 

DDD provides dynamic visual data structure representation and a navigation mechanism; see Section 

3.3.1.7. Other debuggers provide query-based debugging either from a GUI-based or console-based 

interface. For example, Coca provides a Prolog-based query interface from a console, see Section 

4.3.3.10. In contrast, Omniscient debuggers such as ODB and TOD provide GUI-based queries. 

Moreover, some debuggers are integrated within IDEs, which may simplify the edit-compile-link-run-

debug cycle. Another set of debuggers employ a programming approach, allowing the user to write 

and provide the debugger with some code that may or may not share the syntax and semantics of the 

target language. See Acid in Section 3.3.3.2 for an example. 

Often, GUI-based interfaces simplify some of the tedious interactions needed by the console-

based debuggers. For example, GUIs can provide multiple windows within the same screen. This 

permits the possibility of simultaneously presenting more debugging information such as the call 

stack, variable states, and source code. More information about the buggy program may simplify the 

debugging process, especially when it is combined with a convenient navigation mechanism. 

However, GUI has little benefit when it comes to controlling the process of the buggy program [2]. 

2.5. Debugging Process 

Always questioning the nature of the bug leads to debugging hypotheses. Almost every 

debugging process starts with a set of hypotheses, which may include the conditions under which the 

bug is revealed, the bug location, the root cause, the expected behavior, the observed behavior, and 

how to modify the program in order to fix it [10]. Every hypothesis is validated or refuted by the 

debugging process, which may employ different debuggers and debugging techniques. The debugging 

process is an iterative process of verifying, modifying, and changing the set of hypotheses until the 

bug is fixed [10]. It is important to know that a debugging process is different from the process of 

finding bugs, which may include testing and verification. 
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Usually, bugs are revealed long after their failure’s root causes [20]. The debugging process may 

isolate the bug’s root cause that produced the failure through understanding the conditions under 

which the bug occurs. This may include 1) utilizing in-code language features such as print 

statements and assertions, 2) employing an analysis tool whether it is static, dynamic, or a 

combination, 3) stepping through the execution with a source-level debugger, or 4) using an 

automatic debugging tool that may be able to identify the cause or the location of the bug, or at least 

reduce its search space [29]. See Section 2.4.1. 

The debugging process requires experience because bugs are defined based on a combination of 

different factors such as the program implementation, its running environment, and its design 

requirements and specifications. Those factors are specific to that particular program and its revealed 

bug, limiting any generalization that can be made. The debugging process can be seen as a hunting 

strategy that includes five major categories [11] defined by the level of the program understanding 

and the debugging context:  

1. Preliminary investigation is the first step, which is used to ensure that the bug is somewhere in 

the source code and not in the environment such as the hardware or the operating system. This 

step may include reviewing user comments, collecting bug reports, and performing 

preliminary testing. 

2. Static debugging that includes reviewing the requirements, the design, and the source code. 

3. Runtime observation of the program’s behaviors as a whole. This may include testing and 

analyzing inputs, processing steps, and outputs. 

4. In-code debugging through print statements and assertions to verify the program’s execution 

flow of control and validate some critical expression evaluations. 

5. Dynamic debugging using a dedicated debugging tool such as a source-level debugger that 

allows the insertion of breakpoints, single stepping, and execution state investigation. 

2.6. Debugging Process Architecture 

This section presents a new look at a wide range of different debugging tools and techniques, 

some of which are research prototypes while others are real industrial and open source projects. The 

result is a taxonomy that mingles different debugging ideas, techniques, and tools, in one place. The 

classification is presented based on general properties such as pros, cons, techniques, and 

implementations. It emphasizes the idea that debugging tools share one goal regardless of their scope, 
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which is to help a user locate the root cause of a bug. This section gives a closer look at different 

debugging approaches based on their debugging process architecture. 

In Figure 2.2, level one divides debugging techniques into four categories presented in the 

following subsections. Whereas level 2 divides local debugging techniques into manual debugging 

presented in Chapter 3 and automatic debugging presented in Chapter 4.   

 

2.6.1. Local Debugging 

The debugging process is considered local if and only if both the debugging tool and its buggy 

program live on one machine and only one debugging interface is available. Having the debugging 

tool and the buggy program on the same machine is not limited to the in-process communication. 

Inter-process communications between the debugging tool and the buggy program is also considered 

local debugging as long as they are both on the same machine and same operating system. This 

category covers the vast majority of debugging tools. The next two chapters present various manual 

and automatic debugging tools and techniques. 

2.6.2. Remote Debugging 

Remote debugging is where the debugger and buggy program run on different machines or at 

least the debugger front-end is at a machine different from the one that is running the debugger 

0 

1 

2 

Figure 2.2. Debugging Techniques 
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backend and the buggy program. This debugging technique is beneficial in some circumstances where 

the environment affects, and in some cases alters, the debugging situation. For example, the user can 

be sitting at a machine that runs the Linux operating system, but the bug occurs only when the 

program runs on Windows or vice versa. In this situation, the debugger can be running on the user’s 

machine and the target program is running on a remote machine. Remote debugging is useful when 

the target machine or operating system is not directly accessible to the user who is debugging the 

program. Common Integrated Development Environments (IDEs) such as Microsoft Visual Studio 

(MSVS) and Eclipse provide support for remote debugging. 

2.6.3. Collaborative Debugging 

Large scale programs are hard to manage and debug by one person. Different developers may 

collaboratively share the process of debugging by dividing known bugs among themselves, where 

each one works on specific set of bugs, in different sections of the code, independently. This approach 

is inefficient and it can be misleading, especially when some bugs affect other bugs; this means 

developers may end up repeating work or overlapping with each other’s work. Another collaborative 

approach is for developers to work cooperatively on the same bug at the same time (by gathering 

around one screen). This may be inconvenient for some developers for different reasons such as the 

available space, environment, distance, and differences in reasoning or technique. 

A tool that allows different users to collaborate with each other regardless of their location 

would improve and speed up the debugging process. One of the first collaborative debugging tools 

over distance locations was web based; the buggy program is posted on a specific website where 

other developers can look it up and try to resolve bugs. However, real time collaboration would avoid 

any overlapping or redundant work. Codebugger [30] is one of the first tools to provide real time 

collaborative debugging. It is a Java debugging tool that allows a group of developers to participate, 

communicate, and share the debugging session in real time regardless of their physical location [30]. 

Moreover, some collaborative IDEs such as the IBM’s Jazz [31] support a form of real time 

collaborative debugging. 

In contrast, a passive form of collaborative debugging has emerged recently called Cooperative 

Bug Isolation (CBI) [32]. It targets real world bugs in released software. The information from 

successful runs as well as failed runs is sent into a central database. Then statistical inference is 

applied on this collected information to locate the root cause of reported bugs. This form of 

debugging process is collaborative in the sense of collecting data used to locate the root cause of a 

bug automatically. See Section 4.3.3.4. 
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2.6.4. Debugging Parallel and Distributed Systems 

Distributed systems and their debugging techniques are beyond the scope of this dissertation. 

However, this dissertation utilizes the event-driven debugging approach, which is most-common in 

debugging distributed systems. This section highlights a few of the most common characteristics of 

distributed systems that makes event-based debugging one of the most used approaches. 

Debugging parallel and distributed applications is more complicated than debugging single 

threaded or sequential programs. Distributed applications have an extra set of potential bugs, which 

relate to the complexity in communication over multiple simultaneous processes. First, there is lack 

of global time; each part of a distributed application has its own time-dependent behavior. Time 

management is a key characteristic of a distributed system that affects any precise query of their 

global state [9]. A second factor is non-deterministic execution; it is common for distributed programs 

to behave differently with the same input on different executions [33]. Finally, there are multiple 

threads of control: complex patterns of communication are imposed by the parallel activities. This 

adds to the challenge of the debugging process [33, 34].  A debugging tool for distributed systems is 

better when it is integrated within the system in use. This enables it to play a better role in 

coordinating the different parts of the debugging tool itself. For example, the distributed Event-Based 

Behavioral Abstraction (EBBA) tools are adoptable to the behaviors of the local and remote system 

components [35, 36]. The reader may consult the ACM/ONR Workshops on Parallel and Distributed 

Debugging, or the more recent workshop on Parallel and Distributed Testing, Analysis and 

Debugging, for additional information on this subject. 
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Chapter 3  

Manual Debugging Tools and Techniques 

A debugging tool is considered manual when its debugging process depends heavily on the 

user’s ability to investigate and search for the root cause of a bug; tools that find bugs without manual 

investigation are discussed in the next chapter. For example, manual debugging tools may provide the 

ability to control the buggy program’s execution and simplify the user’s investigation. One of these 

tools is the source-level debugger, which provides live execution state investigation by means of 

breakpoints and watchpoints. This chapter presents an empirical study where different manual 

debugging tools are evaluated. Detailed information is given about each debugger or class of 

debuggers such as their goals, usability, utilized implementation techniques, and the pros and cons. 

This classification is intended to summarize the characteristics of different debuggers, see Figure 3.1 

below. The presented tools vary in their user interface, architectural design, implementation, and 

capabilities. 

Figure 3.1. Manual Debugging Tools and Techniques 
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Figure 3.1 shows a tree with the manual debugging tools and techniques presented in this 

chapter. Rectangular shapes used for internal nodes that represent different classes of manual 

debugging tools or techniques, whereas circular shapes used for terminal nodes that represent 

instances or examples of these manual tools and techniques.  

3.1. In-Code Debugging 

Some programmers may favor in-code debugging using built-in language features such as print 

statements, assertions, macros, and functions that are used only for debugging purposes. For example, 

a programmer may have special dedicated functions to traverse some data structure during the 

debugging process. These in-code debugging techniques may be enabled and disabled using a 

compiler flag under the developer’s control. Figure 3.2 shows a sample debugging macro that can be 

enabled and disabled using a compiler flag named DEBUG. 

3.1.1. Print Statements 

Print statements are used as a tracing mechanism to ensure that control flow reaches certain 

execution points with anticipated variable values. Debugging with print statements is considered a 

bad technique for many reasons, one of which is the amount of overhead associated with inserting, 

modifying, and removing these statements. Print statements are problematic because they pollute the 

source code and are always followed with tedious source code cleaning and reorganizing. Dynamic 

………... 

#ifdef DEBUG 

     #define debug(msg) cout<<(msg)<<endl; 

#else 

     #define debug(msg); 

#endif 
…………. 

int main(int args, char **argv) 

{ 

    if (args < 2) { 

       debug(“There are not enough arguments”); 

       exit(-1); 

       } 
…………. 

} 

 

 

Figure 3.2. An Example of Debugging Macros in C++ 
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debugging tools replace print statements with better techniques such as breakpoints and watchpoints, 

whereas supporting such techniques is applicable in a broad spectrum of debuggers. These dynamic 

print statements can be implemented as a special case of existing breakpoints and watchpoints. Even 

though the new techniques provide more capabilities, print statements are still more intuitive 

especially for novice programmers. In practice, most programmers consider print statements as one of 

their first debugging choices. When print statements are used for debugging, it is recommended to 

consider 1) a compiler flag that allows easy enabling and disabling mechanism, or 2) a special 

debugging macro that wraps print statements inside for cleaner management. For example, the C 

preprocessor #ifdef is used with a compiler flag, such as DEBUG, to automate the enabling/disabling 

process during compilation. See Figure 3.2. Furthermore, different flags can be used for different 

debugging levels.  

3.1.2. Assertions 

Assertions are logical expressions that are used to validate pre- and post-conditions and check 

temporal values of variables and expressions. Assertions are different from exception handling; when 

an assertion evaluates to false, the execution usually terminates. In contrast, exception handling is 

often intended to describe how the execution of the program should behave when an unexpected, but 

valid, event occurs [64]. Like print statements, assertions can be enabled and disabled with a compiler 

flag. Moreover, languages such as C# and Java provide assertions in the form of modules that are 

linked into the buggy program during the development process; the .net framework automatically 

strips assertions out of the released build. Furthermore, assertions are not limited to debugging; they 

are widely used in program validation and verification, where they are used for reasoning about a 

program’s execution. Sometimes, assertions are inserted into the source code as comments, where the 

compiler transfers these comments into executable objects— this approach is used in Java Modeling 

Language (JML) [65] and Temporal Rover [66]. For example, statistical debugging uses assertions to 

gather real time information about the execution, and unit-testing tools use assertions to decide 

whether a test succeeded or failed. 

3.2. Dynamic Source-Level Debugging 

This category includes tools that provide techniques to debug a program based on its execution. 

3.2.1. Forward Debugging 
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Forward or unidirectional debugging includes debuggers with either console-based commands or 

GUIs that are used to control and navigate the execution of the buggy program. The tools in this 

category allow only forward execution where the user cannot undo or reverse the execution of a 

program. If for any reason the user is interested in an execution state before the current one, he/she 

has to rerun the program and stop it at an earlier execution point. The following are different 

examples of forward debugging tools.  

3.2.1.1. GDB 

GDB is a classical example of a typical source-level debugger that provides console-based 

interface with inter-process debugging architecture. It depends on the –g option of compilers such as 

gcc. Using GDB, users can perform debugging by means of breakpoints, watchpoints, single 

stepping, and execution state investigation. It facilitates what is called trap based debugging to 

control the execution of the buggy program. The debugger dynamically inserts trap instructions 

(illegal instructions) based on the user’s interest. For example, the step command automatically 

inserts a trap instruction at the start of the next statement. The finish command inserts a trap 

instruction at the return address of the current function. When a user hits continue, the debugger 

executes the buggy program until it reaches another trapped instruction or it terminates.  

Pros: GDB supports a wide range of debugging features that makes it one of the most used 

source-level debuggers on UNIX platforms. It supports different languages such as C, C++, 

FORTRAN, and others. GDB has over one hundred basic commands [8]. However, a handful of 

commands are enough to make effective use of GDB. Cons: GDB’s trapped instruction mechanism 

works without any performance problems as long as the number of trapped instructions is relatively 

small. However, a serious performance problem occurs when the frequency of trap/resume increases 

before the execution reaches the next stop. For example, consider GDB’s counted commands such as 

continue 10000, which can be used to get to the end of a loop. This command may cause the 

debugger to impose a 10000 trap/resume cycles before it stops. The performance overhead of each 

trap/resume cycle is roughly around one million processor cycles, most of which is due to the cost of 

context switching and the system calls used by each trap [1]. A similar situation occurs when the next 

command is used in a recursive function, which may result in a large number of trap/resume cycles 

before the recursive call is completed [1]. Furthermore, the console-based interface is not easy for 

novice and inexperienced programmers [8]. 
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3.2.1.2. Perl Debugger 

Perl has a built-in debugger named perl5db.pl, which is loaded automatically by Perl when the 

user invokes the script with the -d option. It provides console-based interface with in-process 

debugging architecture. The Perl debugger is an interactive Perl environment with a debugger prompt 

for user commands. The debugger allows the user to enter arbitrary statements; anything that does not 

look like an instruction to the debugger is evaluated as Perl code. The Perl debugger provides the user 

with the classical debugging techniques that are found in GDB [67]. Pros: this debugger is fully 

integrated within the Perl interpreter and can handle arbitrary Perl expressions. Cons: it is not really 

intended for extension or debugging research. 

3.2.1.3. PDB 

PDB is the standard Python debugger (pdb.py). It is a module that defines an interactive source-

level debugger for Python programs. It provides a console-based interface with in-process debugging 

architecture. PDB supports the classical debugging techniques such as breakpoints, stepping and 

continuing. It also supports post-mortem debugging and it can be called under program control. 

However, since PDB is a module, it must be imported into the Python program in order to be used; a 

statement such as import pdb must be inserted at the beginning of the Python program. In order to 

start the debugger a statement such as pdb.set_trace() should be inserted into the source code at the 

point that the user would like to start his/her debugging session; the execution of this statement will 

start the debugging session with three actions: 1) stop the execution, 2) show the next statement to be 

executed, and 3) wait for the user input after the (Pdb) prompt. At the prompt, the user can perform 

actions such as 1) execute the next statement with next and step commands, 2) print the value of a 

variable, 3) turn off the prompt with the continue command, 4) continue to the end of the current 

sub-routine with the return command, or 5) exit the debugger with the quit command [68]. 

Pros: PDB provides a combination of the interactive classical debugging techniques found in 

GDB and the post-mortem techniques. Furthermore, the interpretive nature and high level of Python 

make it a good candidate for research experimentation. Cons: PDB was not designed with automatic 

debugging or extension in mind. PDB’s module architecture (in-process) suggests that the use of PDB 

perturbs application behaviors such as garbage collection due to a shared heap. 

3.2.1.4. SmallTalk Debugger 

The SmallTalk system includes very important tools such as a browser, workspace, debugger, 

and inspector. These tools provide a complete development and testing environment that assist in the 
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edit-compile-link-run-debug cycle. All SmallTalk objects understand special messages such as 

doesNotUnderstand and inspect. The doesNotUnderstand message is produced automatically by 

the SmallTalk runtime system as a result of a runtime error. This message causes the SmallTalk 

system to provide the user with an error notification, which asks the user if he/she is interested in a 

debugging session. During a debugging session, the programmer is able to modify the program while 

it is running. In general, SmallTalk runtime errors cause the execution thread to be suspended. In 

some cases the runtime error can be recoverable. The user may fix the error and continue the 

execution. This simplifies the process of reproducing the bug. In contrast, the inspect message is 

produced and sent intentionally by the programmer; it allows a user to inspect an object through the 

inspector window [69]. 

SmallTalk’s debugger has several similarities and important differences compared with UDB 

presented in Chapter 9. The most important similarity is that both use a thread model of execution, 

which provides relatively good, high performance access to program state. Another similarity is that 

most of the debugger is written in the same language as the program that is being debugged. 

SmallTalk’s debugger is less separate from the program being debugged, and relies more on manual 

instrumentation via subclassing and overriding methods to generate events for dynamic analysis. 

3.2.1.5. Deet  

Deet is the Desktop Error Elimination Tool, a GUI-based debugger with inter-process debugging 

architecture. It is a graphical debugger where users can insert breakpoints, watch variables, and 

navigate the source code and examine data structures all with pointing and clicking. It provides the 

debugging through nubs, which are small pieces of machine dependent functions inserted into the 

target program during compilation. Deet debugging commands are performed through 

communications with these nubs, which allow messages between the debugger and its buggy program 

to be passed through a pipe or socket. This is an ideal infrastructure for remote debugging. Deet is 

implemented in tksh, which is an extension to the Korn shell. It utilizes two implementations: one as 

a layer on top of GDB while the other is based on a modified version of GDB with nub API [70, 71, 

72, 73]. 

Pros: Deet is machine independent, graphical, programmable, distributed, extensible, sits on top 

GDB. The size of the debugger is less than 1500 lines of shell plus about 1000 lines of C targets 

machine dependent code for nubs. The small size is attractive because it simplifies the process of 

understanding, modifying, and extending. Cons: Deet’s advanced features such as conditional 

breakpoint extensions are programmable in Tcl or shell. Furthermore, Deet does not provide a match 
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of GDB. For example, it cannot examine a core dump, evaluate a regular C expression, or debug at 

the assembly language level. 

3.2.1.6. DDD  

DDD is the Data Display Debugger, a GUI-based debugger with inter-process debugging 

architecture [8]. It is a graphical front-end to a set of console-based debuggers such as GDB and 

DBX. DDD’s GUI interface provides the ability to display debugging related data such as program 

source code, and the ability to perform debugging commands such as breakpoints and watchpoints. 

DDD does not perform any debugging by itself, commands are forwarded to the underlying debugger 

and information is displayed and visualized in the GUI interface. For example, DDD runs GDB as a 

separate process controlled through the traditional GDB command line interface. However, DDD’s 

novelty is based on its ability to visually display and navigate data structures by utilizing a typical 

debugger. In fact, this feature distinguished it from many GUI extensions to GDB such as XXGDB 

[74] and CGDB (previously called TGDB) [75]. Furthermore, DDD’s design requires no modification 

of the underlying debugger, which makes it attractive to mainstream developers. 

Pros: DDD provides a data visualization and navigation mechanism for simple and complex 

buggy programs’ data structures. It provides a simpler user interface to GDB commands; this 

interface maybe more attractive especially for novice programmers [8]. Furthermore, DDD 

implements a clean design that requires no modification of the underlying debugger and no 

dependencies on particular compilers that may emit distinctive symbol tables. DDD is not tied to 

local debugging; it can be used in remote debugging facilitated by a long distance remote TTY 

communication channel, where DDD is on one machine/processer and the underlying debugger is on 

another machine/processor. Cons: DDD endures performance problems entailed by its inter-process 

communication architecture. DDD’s architecture imposes four layers of communications; at one end 

is the user and at the other end is the buggy program, whereas DDD sits on top of the underlying 

debugger that runs the buggy program. 

3.2.2. Bidirectional Debugging 

Typical source-level debuggers are based on forward execution. Naturally, the debugging 

process develops forward along with the buggy program’s execution that moves to the next statement, 

line, breakpoint, or watchpoint. A user may stop the execution using breakpoints and watchpoints. At 

each stop, the current state is preserved in global variables, objects, and local variables that still have 

activation records on the call stack. Returned procedures are part of the execution history that 

influenced the current state. However, the only way to check their impact is to rerun and stop the 
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program’s execution at a prior point where the procedures’ activation records are still on the stack. 

Moreover, bugs manifest long after their root cause, which is hidden somewhere in the history of 

execution prior to their revealed time and location. Using conventional forward debuggers, the user 

can investigate the current state. If there is no evidence about the bug’s root cause, the user may 

restart the execution hoping to stop at an earlier point where the cause of the bug is still accessible 

[1]. The user may end up investigating incremental modifications on the execution state by stepping 

program source code line by line. 

The ability to go forward and backward in the execution of the buggy program is very useful. It 

allows the user to undo part of the execution and track the bug backward till its root cause is located. 

However, reversing the buggy program’s execution may require the ability to undo the execution of 

each statement. Reverse execution requires supporting techniques to keep track of every assignment, 

save the state after each change, and restore it during the reversal process [37, 38]. This can be a very 

expensive mechanism, which may need special support from the architecture, the operating system, 

and the language compiler. For example, it may need different mechanisms such as full interpretation, 

generation of code with inversion options, or special recompilation [56]. A simpler approach can be 

achieved by utilizing checkpoints, which are saved images of the execution state at various points. A 

debugger that uses checkpoints may allow the ability to undo the execution of group of statements up 

until some previously saved state, which may or may not be the most recent one. Furthermore, the 

debugger may provide the ability to resume the execution from that reverted point. 

3.2.2.1. IGOR 

IGOR is an example of a debugger that provides reverse execution [56]. It uses incremental 

checkpoint facilities called recovery blocks. Pros: it needs no code modification and it applies to 

compiled-languages; no virtual machine is used. It admits to the limitation and the difficulty of being 

able to reverse every state of the execution such as a network communication or an I/O, with the 

possibilities of some workarounds [56]. Cons: like most reversible debuggers, it suffers from 

irreversible inputs/outputs such as mouse movements and print statements [56]. 

3.2.2.2. BDB 

BDB is a bidirectional debugger where each conventional forward movement command can be 

applied backward [1]. The target programming language for this debugger was C and C++ running on 

Digital/Compaq Alpha based workstation. BDB utilizes a special checkpoint mechanism at each 

debugger command, which enables it to reverse each command. The implementation tries to follow 

the user interaction with the conventional debugging by creating checkpoints for every possibly 
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reversible command. For example, the debugger supports a list of reversible commands such as next 

and bnext, step and bstep, finish and bfinish, continue and bcontinue. Pros: instead of restarting 

the execution, a BDB user is able to reverse the execution back to previous points that are saved 

based on previous reversible debugging commands. It overcomes the common forward debugging 

problem of overstepping the bug. Cons: BDB suffers from platform limitations. The technique 

depends heavily on the architecture and the operating system. Moreover, the user can only reverse 

execution based on previous debugging commands. Because it automatically associates checkpoints 

with reversible commands, if a program crashes before hitting any of these commands, a user will not 

be able to reverse and undo the execution. 

3.2.3. Programmable Debugging  

Conventional source-level debuggers such as GDB are considered procedural, and not 

programmable, because conditional breakpoints and watchpoints, are mostly limited to trivial boolean 

evaluations, and  the user ends up stepping through the source code and examining the program state 

such as variables, objects, and the execution stack. In contrast, programmable source-level debuggers 

can be scriptable or declarative. This category includes debuggers with commands in the form of a 

limited language (or sub-language). Programmable debuggers can be either extensible using special 

syntax or notations, or scriptable using special notations that reduce the human factor during the 

debugging process. Scriptable debuggers are different from script debuggers that target scripting 

languages. This section provides three different examples of programmable debuggers. 

3.2.3.1. Dalek 

Dalek is a scriptable debugger built on top of GDB to debug C programs. It utilizes an event-

based data flow approach to debug sequential programs. Dalek supports two types of events: low-

level and high-level; high-level events are constructed from low-level events. Events are represented 

in a graph where the leaves are low-level events and the interior nodes are high-level events. Typical 

low-level events represent execution activities such as entering a procedure, exiting or returning from 

a procedure, or hitting a specific execution point. High-level events can be constructed from lower 

level events by means of pattern matching or programming language constructs. The latter is used by 

Dalek, which claims that its data flow approach is more flexible and provides more user access than a 

pattern matching approach. Dalek’s events are associated with an event handler called a callback 

procedure, which may generate other events. An event handler may suspend or resume the execution 

of the buggy program. Events are provided to the debugger either interactively or through a file. It can 

be seen as a language extension to GDB. Pros: it provides a scriptable debugging interface for GDB. 
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Cons: the user has to know and provide the debugger with those events interactively or through files 

[42]. 

3.2.3.2. Acid 

Acid is a language interpreter with specialized primitives for debugging support. It uses an  

in-process debugging architecture to provide complex interactions between the debugger and the 

target program. This in-process design is supposed to simplify differences between different hardware 

architectures. The developers of Acid criticize conventional debuggers for their limited features. It 

argues that most of the time, it is hard or even impossible to reproduce the state of the program under 

GDB, especially when the state includes complex data structures. In contrast, Acid debugging 

commands are implemented as primitives that can be used by the programmer. There is no need to 

change or extend the debugging core with new functionalities. Users can build their own debugging 

context and interface by combining their own functions along with the debugger primitives in 

different ways [2].  

Pros: Acid provides programmable debugging techniques that may simplify the process of 

reasoning about the behavior of the buggy program, all within a rich and flexible debugging 

environment. Acid’s supporting language provides a powerful assertion mechanism that allows a user 

to assert and validate the logic of the buggy program including its execution state and data structures. 

Cons: an Acid user needs to put some effort in learning a new debugging language. Furthermore, 

Acid’s in-process debugging architecture intrudes on the buggy program space, which alters the 

behavior of the buggy program and may change the bug behavior. 

3.2.3.3. DUEL 

DUEL is an interactive debugger that extends GDB with a high level expression evaluator that 

constitutes a very high level language for debugging. Expressions are a superset of C that includes 

generators inspired by Icon, loop iterations for data structures, and conditionals to control the 

evaluation of the expressions. The user can formulate complex state queries through combining 

expressions. For example, the command ―x[..100] >? 0‖ displays the positive elements of the array x 

associated with their indices. DUEL takes the stand that debuggers should not stick to the syntax or 

semantics of the target language, but must be more expressive to provide easy and more powerful 

investigation. Pros: it provides a simple mechanism to explore program’s data, especially complex 

data structures. Cons: it does not provide the ability to control the processes of the buggy program 

that is required in some debugging situations, especially when the user is interested in stopping the 

execution at some condition or line number [127]. 
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3.2.4. Trace-Based Debugging 

Most trace-based debuggers are not interactive; they create an execution trace history and allow 

the user to investigate the trace. They are post-mortem debuggers. Often, traced data are searched 

using query-based techniques, which may be supported with visualization tools that highlight 

important features or summarize a big picture. 

3.2.4.1. ODB 

ODB is an omniscient post-mortem trace-based debugger for Java programs. It traces every 

change within the execution state of a program that includes two types of events: method call/return 

and assign. Users are able to go backward in time and investigate the history of the execution. ODB 

provides a GUI interface, which allows users to navigate the execution history and apply query-based 

breakpoints. ODB performs an execution trace, and then the user is able to investigate. The traced 

information is collected based on bytecode instrumentation that occurs at load time [47, 48]. Pros: it 

provides the ability to go backward in time to investigate old execution states such as locating where 

a variable was assigned long before it caused a crash, and finding where a method has been called, 

even though it has returned. ODB overcomes some of the problems in classical debuggers; there is no 

guessing where to put breakpoints, and no fatal mistakes of going far past the root cause of the 

problem. It makes the debugging process more deterministic; all data can be saved to a file and 

exchanged between end-users and developers. Cons: it suffers from scalability problems induced by 

the large size of the traced data. For example, a small program (about 300 lines of code) can generate 

about 2 GB of traced data in 20 seconds [76]. 

3.2.4.2. TOD 

TOD is a scalable omniscient debugger inspired by ODB. TOD utilizes a distributed database in 

order to facilitate the ability to process a huge volume of traced data and to permit high performance 

event recording and querying. It was implemented for Java by utilizing the ASM instrumentation 

framework [50]. Then it was extended to support Aspect Oriented Programming [49]. Pros: it handles 

the scalability problem and the limitations of the ODB by facilitating distributed database. It also 

provides control flow navigations, and visualization of traced data. It claims an intuitive user 

interface, which provides the source window of the current event, the state of the stack frames, and 

the current objects. Cons: TOD’s implementation of the database solution makes it difficult to deploy. 

In order to use the debugger, a user needs to know how to setup this distributed database correctly. 

Furthermore, there is an index for each possible attribute value. For each event that enters the 



38 

database it updates the indexes that correspond to its attributes. This generates more indexing data 

than event data, which increases trace size up to 5x. 

3.2.4.3. JDLab  

JDLab is the abbreviation for a set of tools named Java Debugging Laboratory. It debugs Java 

programs by analyzing traced data. Those tools are built on top of the Java Virtual Machine Debug 

Interface (JVMDI) for acquiring execution events. This simplifies the development process and puts 

the focus on the target problem instead of being focused on the instrumentation technique. A 

JDLabAgent generates about 10 bytes of data per event and it needs about 1ms to store 100 events. It 

reduces the amount of traced events by utilizing graph algorithms, which makes the JDLabAgent 

more usable compared with other trace-based debugging tools. Furthermore, unlike other trace-based 

tools that track only method entries and exit events, JDLab can reconstruct the complete method 

execution [76, 77]. Pros: JDLab 1) provides traces with no source code or bytecode modification, 

2) requires no modification for the virtual machine, 3) has selective monitoring points when the 

source code is not available, 4) employs low overhead events, and 5) supports event analysis for 

threads, stack traces, methods’ arguments, methods’ return values, control flow, and exception 

handling.  

3.2.5. IDE-Based Source-Level Debugging 

Some debuggers are integrated within an IDE, which packages and simplifies the compile-edit-

debug cycle. Most of the time, the user is able to navigate and change the source code, place 

breakpoints and watchpoints directly on the source code with pointing and clicking. Furthermore, 

single stepping can be watched directly in the source code. Microsoft Visual Studio and Eclipse are 

two of the most widely used IDE source-level debuggers. 

JIVE is a declarative and visual debugging environment integrated within the Eclipse IDE. It 

utilizes the Eclipse architecture and benefits from the JPDA debugging architecture. It obtains 

debugging information through queries over the program’s execution trace and specific runtime 

states. Debugging information is presented through a visual mechanism [40]. Pros: it makes use of 

the JPDA and the Eclipse IDE, which give it a robust infrastructure. Cons: it handles only small to 

medium size programs. It runs slowly because of the nature of the event collection mechanism and 

the visualization views that are updated after each event. 
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3.3. Model-Level Debugging 

Complex software is often designed with the aid of models such as UML diagrams. UML 

models provide a high level of abstraction, which describes the system behavior through state 

machines, activities, and interactions. Debugging a system model in an early stage of the development 

life cycle would save time later and reduce or prevent costly rework [78]. Manual model-level 

debugging targets UML behavioral models, which can be debugged using dedicated debuggers. 

The UML Model Debugger is built to simulate as much as possible the Eclipse code debugger 

with features such as 1) manually controlling the debugging session, 2) observing current object 

attributes, and 3) breakpoints placed on behavioral elements. However, debugging at a very high level 

of abstraction has to sacrifice debugging features found in lower level debuggers and at the same time 

requires new advanced debugging features. For instance, there is no need for threads and stack 

investigation, but there is a need for behavioral model elements such as transitions, and actions [78]. 

3.4. Summary  

This chapter presented various manual debugging tools and techniques. Table 3.1 shows the 

main characteristics of these tools and techniques based on different categories, which include: the 

debugging process, the user interface, the debugging tool architecture, and the internal technique used 

to provide the debugging information. Each one of these tools addresses one or more main the 

debugging techniques. However, the main problem is their lack for an easy extensible mechanism that 

simplifies the process of adding new debugging features or allows them to collaborate with various 

debugging tools. This limitation is addressed by this dissertation. 
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Table 3.1. Manual Debugging Tools and Techniques 
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1 Print Statements X     X       

2 Assertions X     X       

3 Perl Debugger X    X X    X   

4 Python Debugger (PDB) X    X X    X   

5 Smalltalk debugger X   X  X    X   

6 GDB X X   X  X   X   

7 CDB X    X  X   X   

9 Deet X   X     X X   

10 DDD          X   

11 IGOR  X        X   

12 BDB  X        X   

13 Dalek        X  X   

14 Acid        X  X   

15 DUEL        X     

16 ODB           X  

17 TOD           X  

18 JDLab           X  

19 JIVE   X          

20 UML model debugger            X 
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Chapter 4  

Automatic Debugging Tools and Techniques 

Each bug is associated with a set of symptoms. At some point, the debugging process may aim at 

reducing the program or its set of inputs into the smallest possible subset that maintains these 

symptoms. The precision of the simplification process or the amount of reduction in the generated 

subset may determine the effectiveness of the debugging tool and the debugging process. One of the 

reduction techniques is binary search that repeatedly eliminates some portion of the program until the 

root cause of the bug is located [79, 80]. However, even with binary search, the manual investigation 

is very tedious and time consuming. This intensifies the need for automatic debugging techniques; 

especially for bugs that are difficult to catch using standard tools and techniques.  

Figure 4.1. Automatic Debugging Tools and Techniques 
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Automatic debugging aims at improving the efficiency of the debugging process by automating 

some or all of its boring and time-consuming parts. The ultimate goal is to make the debugging tool 

smart enough to locate the root cause of a bug. For example, program slicing utilizes algorithms to 

eliminate some program parts that are irrelevant to a specific test case [29]. In practice, some 

automatic debugging techniques are still immature. Often, the reduced search space is still too large 

for the root cause to be located easily. Moreover, the kinds of bugs that are catchable by automatic 

methods are often uncertain, inconsistent, or perhaps even enigmatic; they can be a bug in one 

situation while not in another. 

This chapter provides a classification for automated debugging tools and techniques. It presents 

detailed information about each tool’s goals, usability, utilized techniques, and the pros and cons. The 

top level of this classification is divided into two categories based on the kind of analysis in use; 

whether it is static or dynamic. Each of these techniques is divided into sub-categories. Figure 4.1 

shows a tree with the categorization used in this chapter. Internal nodes represent a class of debugging 

tools or techniques whereas leaves are instances of these tools and techniques. 

4.1. Static Debugging 

Static analysis is a technique that is used to retrieve valuable information about the program 

from its source code or object code. They find bugs by analyzing the source code or object code 

without considering an actual program run. In some situations, the source code is analyzed to find 

bugs that may occur during the execution of the buggy program. In other situations, the source code is 

analyzed looking for an already identified bug. For example, static slicing techniques generate a 

subset of the source code that is responsible for a specific bug.  

Static analysis is used in a variety of debugging tools to check semantics, consistent typing, 

memory allocation, logical statements, and security flaws. Some of the static analysis techniques are 

standalone tools while others are techniques employed by other tools such as compilers. The 

following is a list of some of the tools that use static analysis techniques to find potential runtime 

bugs. 

1. CodeSurfer is a product of GrammaTech for statically analyzing C programs. It mostly finds 

bugs by slicing; a slice is a collection of all the code that contributes to the computation of a 

value. It provides the ability to detect some common language misuses and memory related 

bugs [86]. 
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2. Compiler Options such as the –Wall option in the GCC compiler, which enables warnings 

for many common errors [81]. 

3. ESC/Java and ESC/Java2 are compile-time program checkers. They find common runtime 

programming errors in Java programs by static analysis means applied directly on the program 

source code. Users can control the kind and amount of checking performed through specially 

formatted comments [88]. ESC/Java2 is an extension that targets JML. 

4. FindBug is a Java based tool that employs static analysis techniques to find runtime bugs. It 

works on the object code of the compiled Java program; it does not need the actual source 

code. This free standalone tool employs the concept of bug patterns, which are common 

coding practices that are known errors based on a variety of reasons such as misunderstood 

language features, misused API, and bad use of types and wrong boolean operators. This tool 

is extendable through its plug-in architecture, but any extension requires expert knowledge of 

the Java bytecode. In practice, its report of false warning falls under 50% [82, 83]. 

5. Lint is a static analysis tool that targets C/C++ programs on UNIX platforms. Splint is an 

open source tool that can be used on a C/C++ program. It is a stronger checker than standard 

Lint. It checks things such as: unused declarations, type inconsistency, variables used before 

being assigned, ignored return values, apparent infinite loops [85]. PC-lint: is a product of 

Gimpel Software for statically checking C/C++ programs. It can find suspicious program 

properties such as uninitialized simple and aggregated variables, unused variables, unused 

functions, variables that are assigned but not used, and code that is unreachable [87]. 

6. PMD is a Java based standalone static analysis tool that works directly on the source code of 

the target program. It finds bugs such as dead code, duplicated code, and overcomplicated 

code [84]. 

In general, static analysis is usually used to find bugs that do not depend on a specific test run. 

Because they reason about all possible program runs, static analyzers may perform a deeper analysis 

than a tool that employs run-time dynamic analysis techniques. 

4.2. Abstract Debugging 

Abstract debugging is a static semantic-based debugging approach. It uses an abstract 

interpretation that enables the debugging of programs without their execution. Abstract debugging 

and abstract interpretation are different. The former requires precise interpretation in order to find 

and locate bugs successfully; approximation is not applicable in debugging [37, 38]. In contrast, 
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abstract interpretation is about finding a safe ―flow-insensitive‖ approximation of runtime program 

properties, which must hold at some point of the execution [38]. Abstract debugging finds the root 

cause of potential bugs and their conditions through two types of assertions: 1) invariant assertions, 

which they must always hold at the predefined control point in a very similar fashion to the assert 

statement in C, and 2) intermittent assertions, which are assertions that must eventually hold at a 

predefined control point. Users can provide the debugger with invariant and intermittent assertions 

and the debugger automatically checks for the validity of a program, tests the behavior of certain 

execution paths, and finds a bug’s root causes instead of their occurrences. Abstract debugging is 

efficient for higher-order imperative languages as well as logical languages [37].  

Syntox is a research prototype that utilizes abstract debugging and targets the Pascal language. It 

finds bugs related to scalar variables in the program such as array indexing and range sub-types. The 

user is able to insert assertions into the buggy program source code and the debugger treats any 

violation of these assertions as runtime errors [37]. 

4.3. Dynamic Debugging 

Dynamic debugging is primarily based on information obtained from the execution of the buggy 

program. This includes a broad set of debugging tools such as 1) libraries or modules that can be 

linked into the buggy program, and 2) standalone debugging systems. Some dynamic debugging tools 

may utilize some information obtained implicitly from a static analysis technique. These tools can be 

considered hybrid, however, this chapter treats them as dynamic. 

4.3.1. Model Based Software Debugging 

Automatic Model Based Software Debugging (MBSD) is the process of identifying the location 

of defects in a program based on models generated automatically from the execution of a program. 

The generated (observed) model is compared against the intuitive or theoretical model. Model based 

debugging was first introduced by Console et al [89]. MBSD is an application of Model Based 

Diagnosis (MBD) [46]. Sometimes, the generated models are criticized for their accuracy, fault 

assumptions, and their significant computational effort [90]. The difference between the anticipated 

model and the actual observed model is used to identify components that deviate from the normal 

behavior and produce the observed behavior. The model is partitioned into sub models based on the 

actual program source code. In this way, unmatched models can be provided in terms of the actual 

source code segment.   
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There are different model based debugging approaches; this section defines only two of them. 

The first is dependency based models, which are models derived from the dependencies between 

program statements. Static and dynamic analysis techniques can be employed to find such 

dependencies. This category includes many sub-models such as: execution trace based dependency 

model (ETDM), detailed dependency model (DDM), and summarized dependency model (SDM). 

The differences between models are based on the dependencies themselves and the heap data 

structures [46, 90]. 

The second is value based models, which are models derived based on concrete values obtained 

from the source code of the program using static analysis that utilizes the program’s control and data 

flow. It works by comparing values computed by the program containing faults with values expected 

by the specification of a test suite. This approach is more precise than the dependency based model. 

However, the two model approaches implement expensive computations that are proportional to the 

program size [90].  

4.3.1.1. MBD 

Model Based Debugging (MBD) [91] is a technique that, instead of analyzing the source code or 

the execution of the program in order to reduce the search space of the bug location, focuses on how 

the program should behave according to a behavioral model. MDB can be described as a black-box 

that takes as input: 1) the buggy program, 2) an extended finite state machine (EFSM) that represents 

the buggy program’s behavioral model, and 3) a failing input sequence. It performs the debugging 

process by mutating the behavioral model to represent various faulty behaviors. This mechanism 

reduces the buggy program space, and produces a subset of the behavioral model that can lead to the 

failure. Furthermore, the subset is ranked as a list of suspicious diagnoses [91]. 

4.3.1.2. JADE 

JADE [92] is a debugger that implements the functional dependency model. It validates models 

based on the statement level. It combines the standard debugging diagnosis features. The debugging 

is obtained by representing the program as a dependency model, which is compiled into a logical 

model. The actual execution of the program is observed to build its behavioral model. Then the 

observed behavior and the logical model are used to determine potential bugs and the position of their 

root causes. A bug location is defined based on the statement level [92]. 
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4.3.1.3. EBBA 

EBBA is an acronym for Event Based Behavioral Abstraction. It is a high level debugging 

approach that aims at the debugging of complex distributed systems. EBBA builds an execution 

model based on the actual behavior of the program and compares it to the expected behavioral model. 

A set of different behavioral models is constructed from the buggy program to characterize and direct 

the user with more insight on the investigation. Comparing different models will help characterize 

and identify faults and their behaviors [36]. 

4.3.1.4. Ariadne 

Ariadne is a post-mortem event-based debugger targeting explicitly parallel languages. It 

compares the intended program behavior provided by the user with actual program behavior captured 

by event traces. Events represent 1) low-level inter-process communications, 2) language specific 

events, and 3) user defined events. Traces are recorded into an execution history graph where nodes 

represent events and edges represent orderings. The debugger compares the user model and the actual 

execution history graph looking for a complete or partial match of the sub-graphs [93]. 

4.3.2. In-Process Debugging (Debugging Libraries) 

Dynamic in-code debugging performs dynamic checking on a program’s execution properties 

through libraries or modules that are linked into the buggy program. This category includes different 

tools, each of which targets a specific execution behavior. Here are some of the most interesting ones: 

1. BoundsChecker is a product of CompuWare Corporation. It checks memory errors and API 

calls in C and C++ programs. It instruments the intermediate representation generated by the 

Microsoft Visual C++ compiler, which may be faster than modifying the original source code 

[95]. 

2. Electric Fence is a library that can be used to debug memory related bugs in C and C++ 

programs. It must be linked into the buggy program. It produces warnings for potential 

memory related bugs such as freeing memory that does not exist [98]. 

3. Insure++ is a product of ParaSoft that can find memory bugs such as referencing a null or 

uninitialized pointer, or an invalid memory location. The program has to be recompiled using 

this tool instead of one’s own compiler [94]. 
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4. mpatrol is an open source memory allocation library that targets runtime memory problems in 

C and C++ programs. It can be used with gcc as a command line option during compilation 

such as "-fcheck-memory-usage" [97]. 

5. Purify is a product of IBM’s Rational Corporation. It checks memory errors and API calls in 

C and C++ source code and garbage collection problems in Java code. It modifies the object 

code used to build the target executable [96]. 

4.3.3. Dedicated Debuggers 

Dynamic standalone automatic debuggers include a wide range of automatic debugging tools and 

systems. Each tool implements a specific debugging technique in favor of a specific class of bugs. 

This section highlights some of the most distinctive ideas, techniques, and tools. 

4.3.3.1. Convergence Debugging 

Convergence debugging is an automatic debugging technique that utilizes a set of test cases. It 

isolates different test cases based on their convergence on the root cause of the failure by analyzing 

the internal control and data flow of the failed test case. The convergence algorithm selects the test 

cases that maximize the effectiveness of locating faults by measuring the effectiveness of the test case 

in isolating the root cause of a failure. It consists of a means for simplifying inputs, internal data, user 

interaction, and code. The results of these simplifications are analyzed to find the root cause of the 

failure. It uses the test case that caused the failure to find all closely-related and distantly-related test 

cases that also cause the failure. Furthermore, it finds all distance-successful test cases. The failure’s 

root cause is generated based on the difference between the failure cause and the converging test 

cases based on ―tight fault neighborhoods with respect to control and data‖. It measures the distance 

between a set of debug test cases and the actual test case that caused the failure and it finds related 

failures around an already known fault [29]. 

Pros: it helps find related failures based on already known faults. In other words, it produces 

different circumstances that produce the same failure. It provides a tool that is applicable for a wide 

range of languages such as C, C++, C#, VB, and Java. The tool is based on a commercial tool named 

Diversity Analyzer [99] used in the Microsoft .net framework. This tool can handle mixed language 

projects and multiple projects simultaneously, dynamically linked libraries, and multitask code. Its 

goal is to provide an efficient mechanism to measure the power of a test set to isolate the root cause 

of a failure [29]. Cons: it depends on the programmer to locate the fault based on the convergence 

debugging data. The tool is limited to the Microsoft .net environment. 
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4.3.3.2. Program Slicing 

Program slicing was introduced in 1979 for debugging. However, it is currently extended to 

program testing, software measurement, comprehension, and maintenance. It is considered an 

automated reverse engineering technique. When it is employed for debugging, it extracts some parts 

of the program based on some computations. The extracted parts can be the good parts or the buggy 

parts. It includes two major approaches: 1) static slicing that utilizes analysis techniques based on the 

static information contained in the source code, and 2) dynamic slicing that utilizes analysis 

techniques based on the program execution such as control flow, data flow, or both. For example, 

JSlice is dynamic slicing tool for Java programs. Slicing can be 1) forward slicing, which includes all 

statements related to the slice criterion, 2) backward slicing, which includes all of the program 

statements that are used in the computation of the slice criterion, 3) hierarchical dynamic slicing 

[100], or 4) thin slicing [101]. 

Program slicing is implemented by one of three methods: 1) iterative dataflow equations, 

2) relational calculus based on information-flow, and 3) graph reachability by constructing the 

program’s graph dependency followed by implementing graph reachability [102, 103]. Pros: slicing 

tools help users locate source code related to specific conditions such as a relevant variable. 

Generally, it is more efficient in debugging small programs than conventional tools [27]. Cons: 

slicing tools are unable to point the user at the specific root cause of a bug. Instead, they reduce the 

search space into a subset that may be as big as one third of the original program. When a user is 

looking for information relevant to a variable, he/she has to determine what variable is of interest 

before applying the slicing technique [79, 80].  

4.3.3.3. Program Chipping 

Program chipping is a simple automatic debugging technique that isolates bugs by chipping 

away parts of the program based on symptoms. Symptoms might be errors in the output, infinite 

loops, and unhandled exceptions, for example the specified symptoms are used to reduce the size of 

the buggy program based on various heuristic techniques including binary search [79, 80]. The goal is 

to make the programmer focus more on the problematic (symptomatic) part that makes the bad 

output. It employs simple techniques based on the syntactic structure of the program. This makes 

program chipping different from program slicing. In program slicing, the user looks for a specific 

behavior in respect to a variable or set of variables. In contrast, program chipping allows the user to 

search for a specific behavior in the program as a whole (black-box) and proceed automatically until 

the bug is found. Program chipping is simpler than slicing and it does not require sophisticated 
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program analysis techniques, as slicing always does. Program chipping is a specific application of a 

general technique called data slicing, where the buggy program is the data and the chipper is the data 

debugger used on the syntactic structure of the program [79]. 

ChipperJ is an application of the program chipping technique. It builds a parse tree for the 

original program, and then the ChipperJ tool deletes or modifies one or more nodes to generate other 

parse trees, each with a variant that is validated until the best variant is identified [79]. Pros: the 

results are encouraging with 20% to 35% reduction in the original size of the program. Cons: it takes 

about an hour to perform the reduction of 20% to 35% of a large program such as the Java Compiler. 

It does not guarantee to find the minimal variant and it does not work on programs that have 

nondeterministic output such as multithreaded Java programs. Furthermore, the chipper may remove 

critical read statements from the program that will change the variant [79].  

4.3.3.4. Statistical Debugging 

Statistical debugging is an automatic debugging technique for finding and locating bugs in 

released software systems by implicitly collecting real execution samples from real end-users. While 

other debugging techniques collect information that is limited to a particular failed run, statistical 

debugging depends on information gathered at all times. It depends on data sampled from a wide 

range of different actual failed and successful runs. It consists of two phases: 1) sampling the program 

from real users at a minimal cost, and 2) applying a statistical analysis mechanism to locate and find 

the root cause of real world bugs [15, 16, 59, 60]. Information is collected from running programs 

through a sparse sampling mechanism, which is scalable and has little impact on the performance of 

the system. Information is transmitted into a central database for processing. The gathered 

information reflects a large number of executions in distant locations [15]. Statistical debugging 

provides the ability to systematically compare data from failed runs with data from successful runs, 

and improves the debugging process. Information is gathered sparsely using logic predicates that 

randomly sample data from released software [60]. Pros: its scalability deals with real widely used 

programs and a wide range of bugs. The sparse sampling mechanism has little impact on the 

execution of the program. Cons: it requires sampling of the program information over millions runs.  

4.3.3.5. Delta Debugging 

Delta debugging is an automatic way of narrowing down the differences between a failed run 

and a successful run [22]. It is a fully automatic debugging technique that finds the simplest test case 

that generates the failure, and highlights the difference between a passing and failing test case. Since 

reduction of test cases is a human centric process, delta debugging utilizes two algorithms to 
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automatically minimize a set of test cases. First, a simplification algorithm, which implements a 

recursive technique to keep examining a smaller set of the input that produces a failure until no 

smaller set of inputs can be found that can generate the failure. Second, an isolation algorithm that 

finds a passing set of inputs, which when some elements are added to it, produces a failure. This 

algorithm finds the biggest passing set of inputs that is a subset of the failing case [21, 41]. For 

example, DDinput is a plug-in that facilitates delta debugging within the Eclipse IDE. Pros: it is an 

efficient tool for programs that expect structured inputs [41]. Cons: the end user must provide the 

debugger both a successful run and a failed run. Moreover, it takes a considerable amount of time to 

finish the debugging process. However, this time can be justified by the quality of the results and the 

precision of the output in pinpointing at the root cause of the bug. 

4.3.3.6. Hierarchical Delta Debugging 

Hierarchical Delta Debugging (HDD) is a new data debugging technique that is intended to 

speed up the process of debugging with the delta debugger. It produces a better quality output by 

minimizing all failure-inducing inputs [41]. HDD focuses only on the simplification algorithm. The 

technique starts by applying delta debugging to the input data at each level. This excludes a large 

portion of the input at an early debugging stage. Pros: it simplifies the debugging output. It reduces 

the number of test cases by an order of magnitude over the original general delta debugging 

simplification algorithm. It also significantly speeds up the simplification time [41]. Cons: it is 

limited to programs that only accept structured inputs such as: 1) a programming language compiler 

or interpreter that parses input using a context free grammar fed to a compiler or interpreter, 2) an 

HTML/XML web page that maintains the nested structured inputs, 3) a video codec with limited 

depth, and 4) a user interface. It works better when there are few dependencies between the input 

data. It also depends on the programmer to formalize the hierarchy of the input such as building the 

syntax tree [41]. 

4.3.3.7. Relative Debugging 

Most software programs are in a constant modification process. Often, the modified program 

produces the same output as the original program does. Relative debugging facilitates the ability to 

debug two versions of the same program by providing the debugger with the expected similarities 

between their execution states [55]. Relative debugging is different from delta debugging. The former 

targets two different executions of two related programs—two different versions of the same 

program, each with different internal implementation or even different programming language. In 

contrast, delta debugging targets two different runs, a failed one and a successful one, for the exact 
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same program. Relative debugging can be used to debug modified programs by comparing their 

execution states. The bug symptom includes two related programs that generate different outputs or 

behave differently on the same set of inputs. For example, when a program is ported into a new 

platform, a relative debugger helps compare data and execution state between the two platforms. This 

may include environmental changes such as system libraries or new compiler versions. A relative 

debugger can verify the similarities and find any differences between the two programs [54, 55]. 

Relative debugging has several implementations. Guard is the classical example that supports 

relative debugging in heterogeneous environments. VSGuard is the Microsoft Visual Studio 

implementation of Guard. It provides a wizard to build one solution for a project that is ported from 

Microsoft Visual Studio version 6.0 to Visual Studio .net. The user is able to debug the new program 

by specifying assertions on the related data structures. Pros: a relative debugger may run the two 

programs simultaneously, and it compares them in real time. It finds differences which are associated 

with the exact line in the source code. Besides the significant relative debugging techniques, it 

maintains the traditional functionalities of a classical debugger. A relative debugger helps shift the 

developer’s concerns from the actual state of the program into what is the difference and where it 

starts to happen [54, 55]. Cons: relative debugging allows the user to compare the two programs’ 

execution based on expected predefined associations, but it depends on the user who has to specify 

the points of comparison and anticipate the similarities. 

4.3.3.8. Replay Debugging 

Replay Debugging (or Record Replay Debugging) is a class of debuggers that provides the 

developer with a simple mechanism to reproduce a bug that was encountered by the end-user at his 

site. It is different from recording the final core dump caused by a crash and sending it to the 

developer that is adopted by many software vendors. A replay debugger may continuously record 

information from released software. However, only the recorded information before the occurrence of 

the crash is sent to the developers, so they can deterministically replay and reproduce the bug in their 

environment; this may include replaying the last several million instructions before the crash [53]. For 

example, BugNet focuses only on the application level events; it does not record any event or 

instruction from the host operating system. So, it cannot replay the complete system execution [53]. 

Jocky is another example of this kind of debugger [104]. However, Jocky is a library that is linked 

into the program to record invocation of system calls and CPU instructions. It utilizes record replay 

debugging that targets interactive and distributed systems running on a Linux platform. Jocky 

simplifies tracking complex communication with the operating system. It implements a form of 

checkpoints that simplifies the management of long-running programs [104]. 
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4.3.3.9. Whyline 

Whyline debuggers simplify the debugging process by elevating the human interaction with the 

debugger to the natural language level. A user is able to ask typical questions about the execution of 

the program, such as Why did? and Why did not? It implements a trace-based debugging approach that 

tracks the complete execution history. The approach analyzes the traced data and provides the user 

with information in terms of answers to the provided questions. Two different Whyline debuggers 

have been implemented. The first is for the Alice framework and the other is for Java programs. 

Whyline for Java instruments the buggy program’s bytecode using the java.lang.instrument package 

[27]. Pros: Whyline invented a superior debugging interface that provides the ability to ask natural 

language questions about the program’s execution properties; it elevates the debugging process to a 

new level of interactions. A study has found that Whyline debuggers reduce the debugging time, 

especially for novice programmers. Cons: it faces scalability limitations due to the huge volume of 

traced data. For example, it is limited to programs that do not execute for more than a few minutes. 

This prevents its adoption in long running programs. 

4.3.3.10. Coca 

Coca is an event-based automated debugger for C. It builds a trace of events, where each event 

has a semantic value and attributes. It provides a Prolog query-based debugging interface driven by 

the attributes of the runtime event. The searching mechanism combines data and dataflow instead of 

only one. It differs from most trace-based debuggers in its event manipulation mechanism. Execution 

events are not stored in any kind of database. Instead, Coca provides an on the fly analysis 

mechanism executed synchronously along with the trace. It implements breakpoints based on events 

and language semantics. Coca claims that conventional source-level debuggers such as GDB are 

missing the semantic part. Coca events are fine-grained, and are used to model the sequential 

execution of programs written in C. Pros: it provides automatic debugging mechanism with on the fly 

event analysis techniques. Cons: it requires the user to master at least a handful of Prolog primitives 

in order to perform a simple debugging session for a C program [105].  

4.3.3.11. Valgrind 

Valgrind provides dynamic error detection for runtime bugs such as dangling pointers and 

memory leaks. It utilizes a simulation-based technique that models the target CPU for debugging and 

profiling. It provides an automated debugging approach based on synthetic CPU simulation. It 

analyzes runtime properties and detects specific execution faults such as memory corruptions. This 
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type of debugging support depends heavily on the host operating system and the target architecture. 

Its dependency level complicates any attempt at porting its underlying mechanism to new platforms 

or architecture. For example, regardless of Valgrind’s outstanding debugging capabilities, it is still 

limited to the UNIX based operating systems; in particular Linux. Currently, Valgrind is supported on 

architectures such as x86, amd64, ppc32, and ppc64. Pros: Valgrind is designed with ease of 

extensibility in mind. For example, new tools can be created without any need for modification of its 

core structure. It provides exceptional debugging capabilities for C and C++ programs, especially 

when it is used to debug memory corruptions. Moreover, it requires no modification on the target 

program with any instrumentation or special compilation. Cons: it suffers from a noticeable delay that 

ranges from a 20x to 50x slowdown during the evaluation of the buggy program. Valgrind’s lack of 

portability for Windows and Mac OS limits its value [18, 19, 58]. Valgrind has many useful 

extensions that include: 

1. Memcheck is a memory-management checker that detects memory problems such as leaks and 

uninitialized memory. The tool monitors critical program activities such as reads, writes, free, 

delete, new, and malloc. 

2. Cachegrind is a cache profiler that simulates the CPU cache such as L1, L2, and D1. It detects 

all cache misses in programs. 

3. Callgrind is an extension to the Cachegrind that utilizes the caller-callee relationship in 

reasoning about their role in your cache misses. The generated data from this tool is huge. 

KCachgrind is a KDE visualization tool that can simplify the process of reading this tool’s 

output. 

4. Massif is a heap profiler that measures the amount of heap memory used by the program along 

with heap blocks and the stack size. 

5. Helgrind is a thread synchronization detector that finds synchronization errors in the use of 

the pthread primitives, potential deadlocks, and data races. 

4.4. Summary  

Throughout this chapter, various automatic debugging tools and techniques were presented. 

Table 4.1 shows the main characteristics of these tools and techniques based on different categories, 

similar to the ones presented in the summary of Section 3.5. 
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Table 4.1. Automatic Debugging Tools and Techniques 

  Debugging Process 
User 

Interface 
Architecture Implementation 

N
o

. Debugging 

Tool/Technique 

A
b

st
ra

ct
  

S
ta

ti
c 

Dynamic 

ID
E

-I
n

te
g

ra
te

d
 

G
U

I-
B

as
ed

 

C
o

n
so

le
-B

as
ed

 

In
-P

ro
ce

ss
 

In
te

r-
P

ro
ce

ss
 

P
ro

g
ra

m
m

ab
le

 

E
x

te
n

si
b

le
 

T
ra

ce
-B

as
ed

 

M
o

d
el

-B
as

ed
 

F
o

rw
ar

d
 

R
ev

er
si

b
le

 

1 gcc  -Wall  X      X      

2 FindBug  X      X      

3 PMD  X      X      

4 Lint/Splint/ PC-Lint  X      X      

5 CodeSurfer  X      X      

6 ESC/Java   X      X      

7 Syntox X X            

8 MBD   X          X 

9 JADE   X          X 

10 EBBA   X          X 

11 Ariadne   X          X 

12 Insure++   X     X      

13 BoundsChecker   X     X      

14 Purify   X     X      

15 mpatrol   X     X      

16 Electric Fence   X     X      

17 Convergence Debugging   X           

18 Program Slicing   X           

19 Program Chipping   X           

20 Statistical Debugging   X           

21 Delta Debugging   X           

22 HDD   X           

23 Relative Debugging(Gard)   X  X X   X     

24 Replay Debugging    X          

25 Whyline   X   X   X   X  

26 Coca              

27 Valgrind   X    X X  X X X  
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Part II 

Event-Based Debugging Framework  
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Chapter 5  

Alamo Monitoring Framework 

Alamo stands for A Lightweight Architecture for Monitoring. It is a monitoring framework 

developed originally to support program visualization. Alamo is integrated within the Icon and 

Unicon virtual machine [108]. A subset of Alamo was implemented for C and Python [106, 107]. 

This dissertation builds on Alamo’s monitoring features to facilitate a high level abstraction layer for 

Unicon debugging tools. The implementations of the most needed extensions are presented in Chapter 

6. The result of these extensions is called AlamoDE (Alamo—Debug Enabled), which is presented in 

Chapter 7. This chapter presents Alamo’s most important features, within Unicon’s virtual machine, 

that is used as foundations for the new AlamoDE. 

5.1. Unicon’s Co-Expression Type 

Unicon’s threads are called co-expressions. Co-expressions provide synchronous, but not 

simultaneous, expression evaluation mechanism within Unicon’s virtual machine. Unicon’s co-

expressions are similar to co-routines found in other languages. Co-routines are procedure calls where 

the state of local variables and execution control are saved to be resumed at the next entrance to that 

procedure. In contrast, Unicon’s co-expressions are independent threads of control extended to 

include arbitrary expression evaluation. This capability of synchronous co-expressions inside the 

virtual machine provides the ability for different expressions (statements) to be evaluated in a 

synchronous fashion within the same procedure.  

Unicon’s co-expressions are in-process threads that are hidden from the operating system. The 

evaluation of a co-expression requires both an interpreter stack and a C stack that are separate from 

the stacks of the main program. This independent evaluation mechanism provides clean 

intercommunication facilities within the same address space. This makes co-expressions suitable for 

very high level fast communication techniques with no intrusion of one co-expression into another. 

Furthermore, a co-expression context switch does not include any operating system calls. Because 

they are synchronous, co-expression switches are much faster than typical thread switches such as 

those provided by the pthreads library [116].  
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5.2. Architecture 

Alamo’s architecture is based on the thread model of execution monitoring, where a monitor 

program and its target program are separate threads in a shared address space. Alamo extended the 

co-expression facility with the ability to load a program. Each loaded program is set up with its own 

code, static data, stack, and heap, but without linking symbols into the current program. This 

capability allows a program to load another program and execute it in a controlled environment. 

Standalone programs can be loaded and executed as if they were co-expressions of simple 

expressions or procedures. Switching between co-expressions is done through a small piece of 

assembler code that performs a lightweight context switch. The state of the program is saved and the 

control is transferred into the other program without the involvement of the operating system. 

Figure 5.1 shows a monitor program and its target program all within the same Unicon’s virtual 

machine. The monitor program resides in the main co-expression (thread #0) whereas the target 

program resides in a different co-expression (thread #1). Whenever the monitor program requests an 

event from the target program, a lightweight co-expression context switch transfers control to the 

target program. Then the target program resumes its execution until its interpreter encounters a 

runtime event of interest to the monitor. Then another co-expression context switch transfers the 

control back to the monitor program.  

Figure 5.1. Alamo’s Architecture 
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5.3. Features 

Alamo is a monitoring framework adequate for passive observation of program execution, 

suitable for high level sophisticated software visualization tools. The framework provides execution 

monitoring through a variety of tools and techniques that are integrated within Unicon’s virtual 

machine and its runtime system.  

5.3.1. VM Instrumentation 

One of the most difficult parts of writing execution monitors is the instrumentation task. 

Software instrumentation can be manual or automatic. Specific instrumentation frameworks can be 

employed to instrument the target program with specific instrumentation points, or sensors, that 

monitor its execution properties. Most automatic instrumentation tools modify the program’s source 

or object code. For example, most Java monitoring tools instrument the target program’s bytecode at 

load time [24,25,47,48]. In contrast, Alamo facilitates a third kind of instrumentation mechanism, 

which instruments the virtual machine itself where the target program is to be executed. Specific 

locations in the source code of Unicon’s virtual machine and its runtime system include conditions 

that test for specific execution events. Even though this approach has some potential performance 

overhead especially for unmonitored programs, it provides a seamless instrumentation mechanism, 

which requires no special compilation and no source or object code modification. This makes it very 

attractive for experimentation and rapid prototyping of high level visualization tools and techniques. 

5.3.2. Dynamic Loading 

Dynamic loading is the process of loading modules into an application at runtime rather than at 

compile time; the dynamic loading does not include merging names of the loaded modules with the 

host program. It is a subset of dynamic linking. Dynamic linking is the process of linking a module 

into an application at runtime; it includes loading and merging names. The linking process merges the 

executable and the linked module(s) [117]. The result is a shared name space, which may cause some 

naming conflicts between the application and the linked module(s) and perturbs the application 

behavior due to the shared memory such as stack and heap. 

Ideally, the monitor program should have no intrusion on the target program. Achieving this 

clean behavior is not always feasible; especially when a monitor program is designed to depict precise 

execution properties and behaviors. Often, the accuracy and reliability of these monitors increases 

whenever their intrusion on the execution of the target program decreases. 
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For Alamo and its extension AlamoDE, standalone target programs are dynamically loaded into 

a separate execution environment within the virtual machine process, see Figure 5.1 above. This type 

of in-process but separate execution environment is needed for many reasons: 

1. No intrusion on the target program space. Each loaded program has its own execution 

environment 

2. No naming conflicts between the variables of the monitor and target programs 

3. Simple loading and unloading mechanism that allows the ability to load more than one 

program within the same monitoring session 

4. Simple and fast access features—no operating system is involved and no system calls are 

used. Often, in-process is much faster than inter-process communication even when processes 

reside on the same machine 

Alamo’s dynamic loading and execution model minimizes the prospect that a depicted behavior 

is due to the act of monitoring instead of the actual target program behavior. This provides an ideal 

model for debugging. 

5.3.3. Synchronous Execution 

As it was mentioned in Section 5.1, Alamo provides synchronous and not simultaneous 

execution mechanism. This allows easy manipulation of the information obtained from the target 

program. The interpreter of the target program suspends before it reports execution events to the 

monitor program based on the monitor’s current request. This allows the monitor program to utilize 

access functions to further investigate the execution state of the target program after every reported 

event. For example, the monitor program is able to look up the target program’s state such as global 

and local variables, keywords, and data structures. Furthermore, while the target program is stopped, 

the monitor program is safely able to modify the set of monitored events before the next resumption 

of the target program’s execution. 

5.3.4. In-process Execution Model 

Alamo’s event-driven monitoring provides a shared address space, but independent execution 

model where the monitor program is separate from the target program. Each program has its own 

control flow; only one of the two programs is running at any point in time. This execution model has 

several advantages: 
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1. It provides a simple communication mechanism that allows the monitor program full access to 

the target program space. This simplicity allows for complicated communication patterns that 

otherwise would not be considered for reasons of performance 

2. It simplifies the process of writing general execution monitors that can be applied to different 

programs easily 

3. It allows simple management for the monitored events and state of the monitored program, 

because of the synchronization between the monitor program and the target program. 

4. It provides each program with its own memory region. Memory allocations in the monitor 

program do not affect memory in the target program and vice versa. This memory 

independence also affects the garbage collector behavior 

5. The in-process execution model excludes any operating system involvement that might slow 

down any related operation 

5.4. High-Level Execution Monitoring   

Alamo provides a programmer with high level primitives that make programming a monitor as 

simple as any other programming task. This following three sub-sections discusse Alamo’s features 

such as event masking, loading the target program, and activating the target program. 

5.4.1. Event Masking 

Alamo supports a total of 118 kinds of events. Alamo’s events consist of a tuple that pairs a code 

with an associated value. The event code represents the kind of action occurring in this execution of 

the target program, whereas the event value represents a relevant value related to that action. For 

example, if the event code is E_Assign, then the event value represents the string name of the 

variable that is to be assigned. If the event code is E_Line, then the event value represents the actual 

source code line number that is just about to execute. 

The monitor program may receive millions of events from the execution of a small program. An 

event filtering mechanism is needed to optimize the monitoring process. Alamo introduced the notion 

of event mask, a dynamic set of event codes used to filter the target program events before they are 

reported back to the monitor program. The event mask provides a simple but dynamic control over 

the execution of the target program and its prospective events. It reduces the huge volume of reported 

events to the ones that are of interest to the monitor program. This helps build more efficient task-

oriented monitor programs. 
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5.4.2. Loading the Target Program 

An execution monitoring task starts by loading the target program. A target program is loaded 

and initialized within Unicon’s virtual machine using the EvInit() library primitive, which loads and 

initializes the target program. It takes the target program name along with its list of arguments, and an 

optional stack, string-heap, and block-heap sizes. When this function executes, it sets the keyword 

&eventsource with a pointer to the loaded program space—a structure that maintains the loaded 

program execution state. Figure 5.2 shows a monitoring template that monitors procedure and method 

activates of call and return.  

 5.4.3. Activating the Target Program 

Alamo’s execution and monitoring control is event-driven, a programming model that captures 

the execution properties of the target program using events or sensors. The primary primitive in the 

activation process is EvGet(), which resumes the execution of the target program. This primitive 

allows the monitor program to specify the set of requested events before the next resumption of the 

target program. The EvGet() primitive activates the target program up until the next available event. 

Internally, it activates the co-expression currently pointed at by the keyword &eventsource. When a 

target program is activated, it runs until an event is encountered that is of interest to the monitor 

program. The interpreter of the target program reports the next available event code to the monitor 

program as a return value from the EvGet() primitive, and it fails when there are no more events and 

the program terminates. This simple function call interface allows even novice programmers to write 

Figure 5.2. Sample Alamo Monitor 

$include "evdefs.icn" 

link evinit  

procedure main(args) 

   local eventmask 

    

   EvInit(args) 

   eventmask := cset(E_Pcall || E_Pret) 

   while event := EvGet(eventmask)  do { 

      case event of { 

          E_Pcall:{ .................. } 

          E_Pret: { .................. } 

          } 

      } 
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simple execution monitors. A programmer can always access the last reported event code and value 

using the keywords &eventcode and &eventvalue respectively. 

The monitor program can resume the execution of the target program millions of times and the 

user may interact with the monitor program to control the execution of the target program. When the 

monitor program receives a specific event, it may evaluate the received event and perform one or 

more of the following activities: 

1. Reactivate the target program for the next event: perform its next call to the EvGet() primitive 

2. Modify the set of requested events 

3. Inspect further the state of the target program through high level state access primitives, 

4. Forward the received event into one or more external monitors 

5. Terminate the target program. 

5.5 Limitations 

Utilizing the Alamo monitoring framework as a debugging framework showed that it endures 

some limitation. These limitations are:  

1. Did not allow a monitor to change local variables in the target program 

2. Did not support syntax monitoring—needed for some of the automatic debugging needs 

3. Did not handle signals gracefully 

4. Frequent context switches; lightweight plus high occurrence rate accumulates to performance 

problem.  

5. More filtering needed before the event is reported 

6. Did not take full advantage of the in-process architecture, for example stack trace 

These issues were addressed in Chapters 6 and 7. 
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Chapter 6  

AlamoDE: Alamo’s Extensions for Debugging Support 

AlamoDE is an extension to the Alamo framework that enables debugging tools and techniques 

to be written at a high level of abstraction. AlamoDE adds to the original Alamo framework new 

features that: 

1.  Include debugging-oriented virtual machine instrumentation 

2.  Support additional execution state inspection and source code navigation, and 

3.  Provide debugging tools with the ability to change the execution state by safely assigning to a 

buggy program’s variables and procedures 

This chapter provides an overview of the implementation of the most important underlying 

extensions. Some of these extensions are general additions to the Unicon virtual machine and its 

runtime system; in favor of the AlamoDE, while the rest are extensions to the Alamo monitoring 

framework. All sections, except section 6.1, are implemented for this dissertation. The work 

described in Section 6.1 was originally done by Griswold and Townsend, and later adapted and 

extended by Jeffery [108]. This chapter is based on material from [119]. 

6.1. Virtual Machine Instrumentation 

Event-based debugging support needs instrumentation, which can be inserted into the source 

code, the bytecode, or the virtual machine itself. Implicit instrumentation within the virtual machine 

and its runtime system provides a simple mechanism for getting execution events out of a running 

program. However, instrumentation always incurs overhead in space and processing time. Unicon has 

a small virtual machine (about 700KB with the instrumentation). A top priority for Unicon’s implicit 

instrumentation is to minimize the processing time overhead cost, especially for unmonitored 

execution. 

Originally, Alamo was an optional extension to the Icon virtual machine, because Alamo’s 

instrumentation imposed a cost even when monitoring was not being performed. In Unicon, a means 

was developed to include Alamo at very low cost (other than code size) in the production VM. This 

integration allows the debugger to run on the virtual machine synchronously along with the buggy 

program, which is the only one affected by the instrumentation. 
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AlamoDE maintains two versions of 30 runtime functions in the binary executable VM that 

contain instrumentation. One version is uninstrumented and used in any unmonitored execution; the 

other version is instrumented and used when a program is monitored. Not all of the instrumented 

functions are used when the program is under monitoring; a dynamic binding associates the 

instrumented or uninstrumented function with the current execution state based on the current event 

mask, which is specified by the debugger. A table maps event codes into their instrumented functions. 

Whenever an event is added to the monitored events (event mask), the related instrumented function 

is used. If an event is removed from the event mask, the original uninstrumented version of the 

function is restored. 

Inside the Unicon virtual machine source code, the name of the instrumented function uses the 

suffix ―_1‖, whereas the name of the uninstrumented version of the same function uses the suffix 

―_0‖. Functions that contain instrumentation use macros to maintain one copy of the source code, 

which simplifies the maintenance effort. Using this method of dynamic binding, the instrumentation 

imposes no cost on the execution time of the virtual machine until the program is debugged or 

monitored, and the only instrumented functions used are the ones relevant to the currently monitored 

events, which are specified by the event mask and customized by the debugging tool and the 

programmer. 

6.2. Inter-Program Variable Safety 

In order for a debugging tool to be able to change the value of a variable inside a buggy program, 

the tool must have access to the state of the buggy program. The debugging tool and its buggy 

programs are loaded into different co-expressions inside the same virtual machine. It is possible for 

one of the co-expressions to obtain a reference for a variable that is either on the stack, in the static 

data section, or in the heap of the other co-expression. While the first co-expression is trying to 

change a variable in the second co-expression, a context switch may allow control to be transferred to 

the second co-expression. A memory violation might occur if the second co-expression executes 

further while the first co-expression has a reference to a local variable; a reference to a variable that 

lives on the stack might become invalid. For example, this can happen if the procedure returned and 

its activation record is popped off the stack. Since co-expressions are synchronous this is admittedly 

an unlikely occurrence that would only be caused by a deliberate adversary. 

The implemented solution is a trapped variable technique [109]. Trapped variables are not new 

to the Icon and Unicon implementation. For example, some keywords such as &trace require special 

checking before they are assigned. However, this dissertation presents the implementation of a special 
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case of trapped variables between simultaneously executed co-expressions. Whenever one co-

expression obtains a reference to the state of another co-expression, a trapped variable block is 

allocated and the assignment uses a reference to this trapped variable to ensure that no context switch 

ever occurs between the time the reference is obtained and the variable new value is assigned.  

Figure 6.1 illustrates how trapped variables are used. The first co-expression contains a reference 

to a trapped variable block, which references the actual variable in the second co-expression. This 

new block holds information about the current number of context switches between the two co-

expressions, see Figure 6.3. This number is compared to the very recent one just before writing to that 

variable. If there is any difference between the number of context switches when the reference was 

obtained and when the reference is written, then this technique detects the invalid assignment and 

issues a runtime error. This newly introduced trapped variable block is allocated using a new macro 

described in Figure 6.4. 

This new technique produces a runtime error if a monitor deliberately invokes the subject 

program, which can only happen if a context switch occurs in the middle of an assignment to a 

monitored trapped variable. Figure 6.2 shows that this critical section can occur inside an Alamo 

monitor in unlikely scenarios. The statement calls EvGet() and transfer control to the buggy program 

between the time the variable x is referenced and its assignment, but it is not easy. Not surprisingly, 

the code for a normal debugger does not do any such thing. The safety feature was added to the 

language to extend the variable() function to produce references to local variables while a program is 

paused. 

Figure 6.1. Trapped Variable Implementation 
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Figure 6.2. Sample expression where assignment can be violated 

1(variable("x", &eventsource, 1), EvGet()) := 5 

 

Figure 6.3. The New Data Structure Introduced for the Trapped Variable 

#ifdef EventMon 
struct b_tvmonitored {             /*   Monitored variable block */ 
   word title;                             /*   T_Tvmonitored */ 
   word cur_actv;  /*   current co-expression activation */ 
   struct descrip tv;                  /*   the variable in the other program */ 
   }; 
#endif    /* EventMon */ 
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Figure 6.4. The Allocation Macro Introduced for Trapped Variables 

#ifdef MultiThread 
      alctvtbl_macro(alctvtbl_0,0) 
      alctvtbl_macro(alctvtbl_1,E_Tvtbl) 
#else     /* MultiThread */ 
      alctvtbl_macro(alctvtbl,0) 
#endif     /* MultiThread */ 
 
#ifdef EventMon 
#begdef alctvmonitored_macro(f) 
/* 
 *  alctvmonitored - allocate a trapped monitored variable block in the block 
 *  region. no need for event, unless the Monitor is a TP for another Monitor. 
 */ 
 
struct b_tvmonitored *f(register dptr tv, word count) 
   { 
   tended struct descrip vref = *tv; 
   register struct b_tvmonitored *blk; 
 
   AlcFixBlk(blk, b_tvmonitored,T_Tvmonitored); 
   blk->tv = vref; 
   blk->cur_actv = count; 
   return blk; 
   }  
#enddef 
 
alctvmonitored_macro(alctvmonitored) 
#endif     /* EventMon */ 
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6.3. Syntax Instrumentation 

Unicon’s source code information, such as line numbers and file names, is already built into a 

sparse table compiled by the linker as part of the executable binary format—named bytecode or 

icode. The tables associate each Interpreter Program Counter (IPC) with its corresponding line 

number and file name. These tables are employed by Alamo to obtain source code information based 

on the current IPC, which points to the current virtual machine instruction at which the target program 

is stopped. 

Unicon’s bytecode executes as a sequence of virtual machine instructions. Like most binary code 

formats, the bytecode formerly contained no information about the actual syntax of the source code. 

However, some automatic debugging facilities need information about the syntax of the running 

program. For example, an automated debugging technique that locates frequently failed loops needs 

to know when the execution of the buggy program enters and leaves a loop and what type of loop it 

is; such as a while loop. 

The solution is to add a new pseudo instruction that is managed by the translator and the linker. 

The new Op_Synt syntax pseudo instruction extends the line#/column# table with information about 

the syntax. It is a reasonable solution because the only cost is a small increase in the size of the table. 

The cost of retrieving the syntax information from the table is paid for only when a program is 

monitored and that information is needed. 

 

The line#/column# table was transformed into a line#/column#/syntax table without altering its 

position in the bytecode files. See Figure 6.5. The table entry is a 32-bit integer; the 16 most 

significant bits were for the column number and the 16 least significant bits were for the line number. 

The maximum possible line/column number is 65535, which is more than is needed for a column 

Figure 6.5. Unicon's Line/Syntax/Column Table 
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number. AlamoDE changes the column number bits to be the 11 most significant bits, and the 

remaining 5 bits are used for syntax information. The new design reduces the maximum possible 

column number to 2048, which is still more than enough for a column number in handwritten source 

code. The new 5-bit syntax code can hold up to 32 different syntax indicators. Table 6.1 includes the 

currently supported syntax codes in the Unicon virtual machine. 

 

The newly added pseudo-instruction only appears in the human readable object files (named 

ucode) and is used by the linker while generating the executable bytecode. Figure 6.7 shows the 

automatically generated ucode of the program presented in Figure 6.6. Part A is the ucode file before 

the syntax instrumentation, whereas part B is the ucode file after the syntax instrumentation. 

Figure 6.6. Sample Unicon Program 

procedure main(arg) 
    local i := 1 
    while i < 10 do{ 
       write("Hello World !!!") 
       i +:= 1 } 
end 

1 
2 
3 
4 
5 
6 

Table 6.1. Syntax Events and Codes 

Syntax String Code Integer Code 

unidentified syntax any 0 

entering case expression  case 1 

exiting case expression  endcase 2 

entering if expression if 3 

exiting if expression endif 4 

entering if/else expression ifelse 5 

exiting if/else expression endifelse 6 

entering while loop while 7 

exiting while loop  endwhile 8 

entering every loop  every 9 

exiting every loop  endevery 10 

entering until loop  until 11 

exiting until loop  enduntil 12 

entering repeat loop  repeat 13 

exiting repeat loop endrepeat 14 

entering suspend loop supend 15 

exiting suspend loop  endsuspend 16 
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Figure 6.7. Sample ucode Format Before and After the Syntax Instrumentation 

version U9.0.00 
impl    local 
global  1, 0,000005,main,1 
proc main 
        local    0,001000,arg 
        local    1,000000,i 
        local    2,000000,write 
        con      0,002000,2,10 
        con     1,010000,15,110,145,154, 
                   154,157,040,127,157,162, 
                   154,144,040,041,041,041 
        con      2,002000,1,1 
        declend 
        filen    test.icn 
        line     1 
        colm     11 
        mark     L1 
lab L2 
        line     2 
        colm     5 
        mark0 
        pnull 
        var      1 
        int      0 
        line     2 
        colm     13 
        numlt 
        unmark 
        mark     L2 
        mark     L5 
        var      2 
        str      1 
        line     3 
        colm     13 
        invoke   1 
        unmark 
lab L5 
        pnull 
        var      1 
        dup 
        int      2 
        line     4 
        colm     10 
        plus 
        asgn 
lab L3 
        unmark 
        goto     L2 
lab L4 
        line     2 
        colm     5 
        unmark 
lab L1 
        pnull 
        line     6 
        colm     1 
        pfail 
        end 
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A. Sample ucode without Syntax Info 

version U9.0.00 
impl    local 
global  1, 0,000005,main,1 
proc main 
        local      0,001000,arg 
        local     1,000000,i 
        local     2,000000,write 
        con      0,002000,2,10 
        con     1,010000,15,110,145,154, 
                   154,157,040,127,157,162, 
                   154,144,040,041,041,041 
        con      2,002000,1,1 
        declend 
        filen     test.icn 
        line      1 
        colm    11 
        synt     any 
        mark    L1 
lab L2 
        line      2 
        colm    5 
        synt     while 
        mark0 
        pnull 
        var      1 
        int       0 
        line     2 
        colm    3 
        synt     any 
        numlt 
        unmark 
        mark    L2 
        mark   L5 
        var      2 
        str       1 
        line      3 
        colm   13 
        synt    any 
        invoke   1 
        unmark 
lab L5 
        pnull 
        var      1 
        dup 
        int      2 
        line     4 
        colm     10 
        synt     any 
        plus 
        asgn 
lab L3 
        unmark 
        goto     L2 
lab L4 
        line     2 
        colm     5 
        synt     endwhile 
        unmark 
lab L1 
        pnull 
        line     6 
        colm     1 
        synt     any  
        pfail 
        end 
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B. Sample ucode with Syntax Info  
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Part B of Figure 6.7 shows the new pseudo-instruction synt added to the ucode after the 

originally implemented line and colm (column#) pseudo-instructions. The binary executable is 

assembled from one or more ucode files using the linker. The linker processes the synt pseudo-

instruction by inserting the syntax code specified by its operand into the line#/column#/syntax table. 

AlamoDE presents syntax information as a new selectable event code E_Syntax and its related 

event value is the syntax code, see Table 6.1. A monitor program can inquire the current syntax name 

at any time using the newly added keyword &syntax. This keyword’s presence is limited to the 

monitored program, where it is accessed using the Alamo keyword() function. 

Figure 6.8 shows a sample monitor program that uses the new E_Syntax event. This monitor 

prints the line number and syntax name for every executed source line. The E_Line event code is 

reported whenever the execution changes into a new source line. This program also prints the line 

number and syntax name for every modified syntax structure. The E_Syntax event code is reported 

whenever the execution changes into a new syntax construct.  

Figure 6.8. Sample Syntax Monitor 

$include “evdefs.icn” 

link evinit 

link syntname # needed for the library primitive syntax() 

 

procedure main(args) 

     local eventmask, synt_code, synt_name, line 

     EvInit(args) 

     eventmask := cset(E_Line || E_Syntax) 

     while EvGet(eventmask) do{ 

          case &eventcode of { 

               E_Line:{ 

                   synt_code  := keyword(“&syntax”, Monitored) 

                   synt_name := syntname(synt_code) 

                   write(“line # : ”, &eventvalue,” ,   syntax name is :”, synt_name) 

                   } 

               E_Syntax:{ 

                   line  := keyword(“&line”, Monitored) 

                   synt_name := syntax(&eventvalue) 

                   write(“syntax change at line # : ”, line,”  new syntax: ”, synt_name) 

                   } 

               } 

          } 

end  
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6.4. High-Level Interpreter Stack Navigation 

The Unicon language provides some reserved global names prefixed with ampersand (&) called 

keywords. Some keywords are introduced by Alamo for monitoring needs. For example, the keyword 

&eventsource contains a reference to the currently monitored program. Other keywords are used for 

error reporting and debugging. For example, the keywords &file, &line, and &column, report the 

currently executed file name, line number, and column number respectively. See Table 6.2 for more 

monitoring and debugging related keywords [4,5,6]. These keywords can be inserted directly in the 

source code of the buggy program for debugging with print statements and assertions. 

 

Table 6.2. Unicon's Debugging Related Keywords 

# Keyword Description 

Source Code Related Keywords 

1 &file Reports the currently executed source file name 

2 &line Reports the currently executed line number 

3 &syntax Reports the currently executed syntax name 

Interpreter Stack Level 

4 &level Reports the current number of procedure frames on the interpreter stack 

Memory Allocation Related Keywords 

5 &allocated Reports the total allocations in heap, static, string, and block regions 

6 &regions Reports the current size of static, string, and block regions 

7 &storage Reports the currently used memory in the static, string, and block regions 

Garbage Collection Related 

8 &collections Reports the number of collections in heap, static, string, and block regions 

Monitoring Related Keywords 

9 &eventcode Reports the code of the last reported execution event 

10 &eventvalue Reports the value of the last reported execution event 

11 &eventsource Denotes to the currently monitored program 

Error Reporting Related Keywords 

12 &errornumber Reports the current runtime error number 

13 &errortext Reports the current runtime error message 

14 &errorvalue Report the current runtime error value 
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The keyword() primitive is used by Alamo to access keywords that belong to the execution state 

of the target program. This primitive is used to take two parameters: 1) the string name of the 

keyword that a monitor is hunting for, and 2) the target program’s co-expression handle, from which 

the keyword value is obtained. For example, the current file name can be obtained using 

keyword(“&file”, &eventsource), whereas keyword(“&line”, &eventsource) is used to obtain the 

current line number. 

Originally, this primitive did not provide the ability to obtain the value of the keywords &file and 

&line for procedures that have active frames on the interpreter stack, other than the top one. For 

example, a source-level debugger requires this feature to facilitate a back tracing mechanism. It is 

needed to provide connections between the activation records on the stack and the source code 

location, file name and line number, which initiated each of these records. A mechanism that is 

supported by the runtime system can avoid a huge monitoring overhead.  

The extension mechanism utilizes the level of the activation record on the stack. This level is 

used to obtain the activation record and read its Interpreter Program Counter (IPC), which can be used 

to identify the file name and line number using a binary search algorithm, taking advantage of the fact 

that these tables are already sorted based on their IPCs. This mechanism extends the keyword() 

primitive with a third optional parameter, which is the level number of that procedure on the 

interpreter stack. This new feature is very useful in traversing the execution stack in UDB’s 

backtrace (or where) command. The default level is zero, which is the level of the most recent 

procedure frame currently at the top of the stack.  

For example, keyword(“&file”, &eventsource, 10) returns the file name that contains the call to 

the 10
th
 outermost  activation record on the interpreter stack. Similarly, keyword(“&line”, 

&eventsource,10) looks up the buggy program’s call stack, and returns the line number of the 

statement for which the tenth outer most activation record was instantiated. Figure 6.10 shows a 

sample Unicon procedure that backtraces the stack. This procedure is called from the debugging tool 

(monitor program). Figure 6.9 shows a sample output for this procedure. 

Figure 6.9. Sample Stack Trace 

0  #  Current location is in procedure DD, test.icn:25 

1  #  procedure DD was called from procedure CC, test.icn:19 

2  #  procedure CC was called from procedure BB, test.icn:12 

3  #  procedure BB was called from procedure AA, test.icn:5 

4  #  procedure AA was called from procedure main, test.icn:29 

 1 

 2 

 3 

 4 

 5 
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6.5. Signal Handling 

Signals are interrupts sent to the process by the operating system. Some signals are fatal, while 

others can be ignored or handled by the process using dedicated signal handlers. In Alamo’s thread-

based monitoring model, the operating system treats the virtual machine as one process, but at any 

point in time, only one of the multiple loaded programs is running. This means receiving a signal and 

handling it depends on which program is holding the execution control when the signal is issued and 

whether the signal is trapped by the signaled program or not. 

If the virtual machine has only one loaded program, then the signal is handled only if that 

program already has a trap for it. Otherwise, the signal’s default action is performed. This was the 

original design consideration by the Unicon virtual machine and its runtime system. However, a new 

design is needed for multiple programs running synchronously within the same virtual machine. This 

new design is based on whether the signaled program is a parent or a child. If a child program 

received a signal that is not handled or trapped, then this child program is terminated and execution 

Figure 6.10. Sample Procedure that Backtraces the Current Stack  

procedure backtrace() 

   local frame, level, fname, line, curpname, pname 

    

   frame:=0, 

   level := keyword("&level", Monitored) 

 

   curpname := image(proc(Monitored, 0)) 

   fname := keyword("&file", Monitored) 

   line  := keyword("&line", Monitored) 

   write(frame||"  #  Current location is in "|| curpname||", "||fname||":"||line) 

 

   frame +:= 1 

   while frame < level do{ 

      pname := image(proc(Monitored, frame)) 

      fname := keyword("&file", Monitored, frame) 

      line  := keyword("&line", Monitored, frame) 

      write(frame||" # "||curpname||" was called from "||pname||", at "||fname ||":"|| line) 

      frame +:= 1 

      curpname := pname 

      } 

end 
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control is transferred back to its parent. If the parent program is the one who received the unhandled 

signal, then the signal’s default action is performed regardless of its children. If this parent is the root 

program in the current VM, then the complete process is terminated.  

 In order for the monitor program to observe signals received by the target program, a new event 

code E_Signal reports whenever a child program receives a signal that is not trapped or handled. The 

value of this event is the string name of the received signal. For example, Figure 6.11 shows a 

monitor program using the E_Signal event in its event mask. This program prints the string name of 

the signal whenever it is reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. Sample Monitor Program Using the E_Signal Event 

procedure main(arg) 

    local eventmask 

 

    eventmask := cset(E_Signal || E_Pcall) 

    while EvGet(eventmask) do 

       if &eventcode === E_Signal then 

          write(“The child program received the signal : ”, &eventvalue) 

end 
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 6 

 7 

 8 
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Chapter 7  

AlamoDE: The Debugging Framework 

AlamoDE is the result of recent extensions to the Alamo framework. AlamoDE provides high 

level facilities for event-based debugging tools that observe, inspect, analyze, control, and change the 

state and behavior of a buggy program. Its goals include:  

1. The ability to write debugging tools at a high level of abstraction, 

2. All the usual capabilities of classical debuggers, 

3. Support for the creation of advanced debugging features such as automatic debugging and 

dynamic analysis techniques, 

4. The ability to debug special language features such as generators, goal-directed evaluation, 

and string scanning, and  

5. Extensibility that allows different standalone debugging tools to work in concert with each 

other. It allows one debugging tool to forward events into another tool, whether it is real 

execution and runtime events or pseudo events. 

This debugging framework has been tested and refined within a multi-agent debugging 

architecture called IDEA presented in Chapter 8, and an extensible source-level debugger called UDB 

presented in Chapter 9. This chapter introduces various AlamoDE features, some of which are a result 

of the extensions presented in Chapter 6 while others are original Alamo and Unicon features used 

within the context of AlamoDE for debugging needs.  

7.1. Debugging Events 

Originally, Alamo provided a programmer with a wide range of events. Some events are 

explicitly related to the evaluation of source code expressions, while others are implicit runtime 

system events. Explicit events include: 

1. Execution source code location such as line and column numbers 

2. Procedure, built-in function, and operator activities such as call, return, fail, suspend, and 

resume, and 

3. String-scanning activities that include scanning environment creation, and position change. 
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Implicit events include: 

1. Memory allocation activities, which are distinguished based on the target region (there are 

string, block, and static regions), and based on the size and type of the allocated blocks, 

2. Garbage collection activities, which are distinguished based on the region being collected and 

the program, which has the activity that triggered the collection process, 

3. Type conversions performed on parameters to functions and operators, and 

4. Virtual machine instructions executed by the Icon virtual machine.  

Debugging and visualization serve many common goals. For AlamoDE, the underlying 

instrumentation was extended with three event types that are needed for debugging. The new events 

are: 

1. E_Deref reports when a variable is read (dereferenced). This event is needed to implement 

watchpoints on specific variables. This event was implemented prior to the state of this 

dissertation. 

2. E_Signal reports when a target program receives a signal that is not trapped or handled. See 

Section 6.5 for the implementation. 

3. E_Syntax reports when a major syntax construct such as a loop starts or ends. This event was 

inspired by the needs of automatic debugging systems [12, 110] and required that syntax 

information be added to the Unicon virtual machine bytecode executable format. See Section 

6.3 for more syntax instrumentation details. 

Figure 7.1 shows a sample debugging loop where EvGet() is used inside the while condition. 

This function keeps activating the monitored program reporting the next available event until the 

monitored program is terminated. In this while loop, each reported event is filtered. The E_Line 

event is used for implementing breakpoints and single stepping. It is reported whenever the execution 

jumps to a new line number in the actual source code of the monitored program. E_Assign event is 

reported whenever a variable is assigned. This event code is always followed by the E_Value event 

that represents the assigned value. E_Deref event is reported whenever a variable is being read, 

E_Spos and E_Snew relate to the string scanning environment. And finally E_Error and E_Exit are 

reported whenever the target program is terminated. E_Error shows that a runtime error caused the 

termination whereas E_Exit shows a normal program termination.  
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7.2. Event Filtering 

Considering the many millions of events produced by AlamoDE’s detailed VM instrumentation, 

which provides 121 kinds of events, an efficient filtering mechanism is needed to reduce the 

monitoring time. Alamo originally used a simple bit vector called an event mask to specify event 

types of interest. Later and before the start of this dissertation, the filtering was extended so that each 

event type of interest could have an associated value mask, a set of event values of interest, which 

further restricts whether an event is reported. Instrumentation in the virtual machine checks for 

execution events in two levels. First, it checks whether the encountered runtime event is part of the 

event mask. Then, it checks if there is a value mask associated with this kind of event. If so, only 

those events that have values in the value mask are reported. See Figure 7.2.  

The dynamicity of event mask and value mask allow a debugging tool to change and customize 

the monitored events on the fly during the course of execution; any change on either of the two masks 

will immediately change the set of reported events. For example, placing a breakpoint on one or more 

line numbers requires the E_Line event to be a member of the event mask. The value mask provides 

the ability to limit the reported E_Line events to those line numbers that have breakpoints on them. 

To clear a breakpoint, a tool removes the line number from the value mask.  The E_Line event is 

removed from the event mask only if there are no more breakpoints and no other requests for E_Line 

events by the debugging tool or any of its cooperative tools. Figure 7.3 shows a monitor program that 

asks the user for a line number that is to be monitored during the execution of the target program. It 

uses the value mask table with the E_Line key. 

Figure 7.1. Sample AlamoDE Debugging Loop 

 

# Template of an AlamoDE event-based debugging loop 

EvInit(“buggy program name and its arguments”) 

while event := EvGet(eventmask, valuemask) do { 

case event of { 

          E_Line                        : {  }  # handle breakpoints, stepping, etc  

          E_Assign | E_Value : {  }  # Handle assignment watchpoints          

 E_Deref             : {  }  # Handle read watchpoints 

          E_Spos    | E_Snew : {  }  # Handle string scanning environments 

          E_Error             : {  }  # Handle a runtime error   

          E_Exit              : {  }  # Handle buggy program normal exit  

         } 

       # Handle other debugging features such as tracing, 

           # profiling and internal and external debugging tools  

} 
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7.3. Execution State Inspection and Modification 

AlamoDE provides facilities to inspect the execution stack, check a variable state, and acquire 

information about the source code of the buggy program. It allows the monitor to control and change 

the state of the buggy program by assigning to variables and redirecting procedures and functions. 

The target program’s execution state and data are accessible by the monitor program. Alamo provides 

two kinds of features that allow a monitor program to inquire about the execution state of a target 

program. First, events that are reported based on different actions during the evaluation of the target 

program. Second, a monitor program is always able to look up further information about the target 

program’s state of execution using high level primitives. 

7.3.1. Variables 

Alamo provides several built-in functions for execution monitors. Monitor programs use these 

primitives for further investigation of the target program execution state. A variable is either global, 

or local including static and parameter variables. Variable names can be obtained using dedicated 

primitives such as globalnames(), localnames(), paramnames(), and staticnames() [4]. A local 

variable value can be obtained using the built-in function variable(name, &eventsource, level), 

which returns the current value of the variable name in the frame number level of the buggy 

program’s call stack. If name is a global variable or a keyword, the same function is used without the 

level parameter (i.e. variable(name, &eventsource)). 

Figure 7.2. AlamoDE’s Architecture 
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The variable() function is also used by debugging tools that modify the target program’s state by 

assigning to variables in the buggy program. When it is used to assign a new value to a variable in the 

target program, a fourth parameter is used as a flag, see Figure 7.4. This flag is an integer value 

introduced by the implementation of inter-program variable safety that is presented in Section 6.2. 

When this flag is present with a value other than zero, it allows the monitor program to safely assign 

to a variable in the monitored program.  Otherwise, the assignment is ignored. This behavior prevents 

the monitor program from modifying target program execution properties that are not valid. If a 

context switch occurred between the time the variable reference is obtained and the time the 

assignment is complete, this assignment will produce a runtime error and terminate the execution. 

Figure 7.3. Sample Monitor Using the event mask and value mask 

$include “evdefs.icn” 

link evinit 

 

procedure main (args) 

     local fname, eventmask, valuemask, line, ans, flag 

 

     EvInit(args) | stop(" *** cannot initialize monitored program *** ") 

     eventmask:= cset(E_Line) 

     valuemask:= table() 

      

     write("Please enter a line number you want the execution to stop at:") 

     line := integer(read()) 

     valuemask[ E_Line ] := set(line) 

      

     while EvGet(eventmask, valuemask) do { 

           fname := keyword(“&file”, Monitored)  

           write(" ==> reaching line number "|| &eventvalue || " in file ", fname) 

           write("would you like to stop at another line (Y/n):") 

           if  /flag & (*(ans:=read())=0 | not(ans[1] == ("n"|"N"))) then { 

               write("Please enter a line number :") 

               line := integer(read()) 

               insert(valuemask[E_Line], line) 

               } 

           else 

               flag := 1 

          } 

end 
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7.3.2. Procedures and Stack Frames  

Activation records (frames) on the stack are distinguished by a positive integer called level; the 

most recent stack frame is at level zero, whereas the highest level value is for the activation record of 

procedure main(). The proc() built-in function was extended for AlamoDE to allow the debugging 

tool to identify which procedure is currently active on a specific stack level. For example, 

proc(&eventsource,7) returns a pointer to the procedure or method, which lives on the seventh outer 

most level of the buggy program’s call stack. The depth of the call stack can be checked using the 

keyword &level. The keyword(“&level”, &eventsource) returns the number of  frames currently on 

the buggy program’s interpreter stack. 

Furthermore, the Unicon language allows programmers to replace a procedure with another 

procedure during the execution. This feature is very useful for some debugging tools. For example, if 

the buggy program contains two versions of a sorting algorithm, in different procedures, the debugger 

can replace one by the other on the fly during the execution. 

The procedure or method pointer obtained by the proc() function allows a debugging tool to 

place a call to that procedure as an inter-program procedure call. This mechanism is very useful for 

interactive source-level debuggers. For example, the buggy program may contain a procedure that 

prints the elements of a linked list, which is being debugged by the user. The debugger can place a 

call to that procedure, from any point during the debugging session, without modifying the buggy 

program source code. Moreover, a source-level debugger may incorporate general service procedures 

that can be plugged in to the buggy program source code on the fly during the debugging session.  

For example, the assignment in Figure 7.5 replaces the buggy program’s procedure sort1() with 

the debugger service procedure qsort(). Of course, the two procedures’ formal parameters must be 

compatible in their order and type. 

variable(“sort1”, &eventsource) := proc(“qsort”, &current) 

Figure 7.5. Modifying Procedures in the Buggy Program 

variable(name, &eventsource, level, flag) := value 

 
Figure 7.4. Assigning Variables in the Buggy Program 
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7.3.3. Executed Source Code 

Unicon’s executable bytecode contains information about the linked source files including any 

used library modules. For AlamoDE, a class library was developed to analyze the bytecode and 

generate a list of its source file names, and their static source code properties such as packages, 

classes, global variables, and user defined functions. Another class library maintains a list of all 

source files in use. Those library classes provide a debugging tool with the buggy program’s source 

code static information. Furthermore, the debugging tool can inspect the currently executed source 

code using runtime events and high level functions such as the keyword() function discussed in 

Section 7.3.2. For example, the E_Line and E_Syntax events report the currently executed line 

number, and source code syntax construct respectively. 

7.4. Advanced Debugging Support 

AlamoDE provides underlying infrastructure for automatic debugging, dynamic analysis, 

profiling, and visualization. 

7.4.1. Multitasking 

AlamoDE provides a multitasking mechanism for various debugging tools and techniques. A 

debugging tool runs as the main co-expression inside the virtual machine. A buggy program and 

secondary standalone debugging tools can be loaded into different co-expressions controlled by the 

debugger. A debugger transfers control to the buggy program using the EvGet() function. Then the 

buggy program executes until there is some event that is of interest to the debugger. EvGet() requests 

the next event by resuming the program that is denoted by &eventsource. An AlamoDE-based 

debugging tool can debug multiple buggy programs in one session. This can be used to perform 

advanced debugging techniques such as relative debugging [54] or delta debugging [21]. Switching 

between different programs is accomplished by changing the value of &eventsource before the next 

call to EvGet(). 

7.4.2. Event Forwarding 

A monitor coordinator allows different debugging tools to work in concert during the same 

monitoring activity, playing the role of a central server for other debugging tools. The debugger and 

its loaded tools work synchronously on the same buggy program. One debugging tool can use the 

EvSend() primitive to forward an event to another tool running on the same virtual machine. This 

primitive forwards an event code and its corresponding value into another tool. The forwarded event 
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is received by the other debugging tool as it requests the events using the typical EvGet() primitive. 

Moreover, this forwarded event code and value do not need to be any real event reported from the 

target program. Sometimes, this primitive is used to provide other monitoring tools with artificial or 

pseudo events, which can be used as a communication protocol between various debugging tools. 

Additionally, the primitive eventmask() provides the ability for a monitoring tool to read or 

modify the set of events requested by another monitoring tool. This feature is important for 

performance reasons. The main debugging tool, which is also called the debugging coordinator, can 

utilize monitoring information from secondary tools to optimize the number of monitored events 

applied on the target program. Furthermore, this main debugging tool needs to know the kinds of 

events that are requested by each of the secondary tools in order to forward them. 

7.4.3. Custom Defined Debugging Tools 

AlamoDE puts execution events in the hands of programmers, who can use events, event 

sequences, and event patterns to write their own automated debugging and dynamic analysis tools. 

For example, the code in Figure 7.7 shows a toy example of an AlamoDE-based debugging tool. It 

captures the number of garbage collections that happen during the execution of a buggy program, and 

finds the total and average of collected data from the string and block regions. This provides a rough 

measure of whether the buggy program is mostly doing string processing or not. This example 

program can be used as a standalone tool, or loaded into another debugging tool on the fly without 

any source code modification at all. 

Secondary Debugging 
Tool #1 

Secondary Debugging 
Tool #M 

Main Debugging Tool 
(A Debugging Coordinator) 

Buggy Program 
#1 

Buggy Program 
#N 

EvGet( ) EvGet( ) 

EvGet( ) 

Event Event 

EvSend( ) 

Figure 7.6. AlamoDE Debugging Capabilities 
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$include "evdefs.icn"  

link evinit 

class Example ( 

         eventMask, gc,  lastStr, lastBlk,  collectedStr, collectedBlk,  avgStr, avgBlk 

         ) 

method handle_E_Collect() 

   local Storage := [ ] 

   gc +:= 1 

   every put(Storage, keyword("storage", Monitored)) 

   lastStr := Storage[2];   lastBlk := Storage[3] 

end 

method handle_E_EndCollect() 

   local Storage := [ ] 

   every put(Storage, keyword("storage", Monitored)) 

   collectedStr  +:= lastStr - Storage[2];  collectedBlk +:= lastBlk - Storage[3] 

end 

method analyze_data() 

   if gc = 0 then return 0 

   avgStr := collectedStr / gc; avgBlk := collectedBlk / gc 

end 

method write_data() 

   write(" # Garbage Collections   : ", gc) 

   write(" Collected Strings  :  ", collectedStr,”  Avg :”, avgStr) 

   write(" Collected Blocks  :  ", collectedBlk,”  Avg:”, avgBlk) 

end 

initially() 

   eventMask := cset(E_Collect || E_EndCollect) 

   gc := 0;  collectedStr := collectedBlk := 0.0 

end 

procedure main(arg) 

   EvInit(arg) 

   obj := Example()   

   while event := EvGet(obj.eventMask) do { 

      case event of  { 

         E_Collect:        {  obj.handle_E_Collect()        } 

         E_EndCollect: { obj.handle_E_EndCollect()   } 

         } 

      } 

   obj.analyze_data() 

   obj.write_data() 

end 

Figure 7.7. An AlamoDE Debugging Agent 
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Part III 

Very High Level Extension Mechanism  
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Chapter 8  

IDEA: A Debugging Extension Architecture 

This chapter presents the Idaho Debugging Extension Architecture (IDEA). IDEA’s extensions 

are called agents. IDEA’s agents are event-driven task-oriented program execution monitors that 

embody lightweight dynamic analyses. IDEA’s agents are written and tested as standalone programs, 

after which they can be loaded and used on the fly from within the IDEA-based source-level 

debugger (external agents), or integrated as permanent features into the debugging core (internal 

agents). The IDEA-based source-level debugger provides a simple interface to load, unload, enable, 

or disable debugging agents on the fly, and the user can be selective about where, when, and which 

agent(s) to use. This chapter is based on material from [120]. 

8.1. Debugging with Agents 

Conventional debuggers allow users to explore their debugging hypotheses using manual 

investigation. Debugging with agents leverages the conventional debugging process by empowering 

the user with more tools to inspect the state of the buggy program. For example, many functions 

return a specific value when they encounter an error or fail to accomplish their job. An agent can 

automatically catch any of these failed functions and save the user the time that can be spent during a 

manual inspection. In general, IDEA’s agents may retain information beyond the current state of 

execution and perform automatic debugging and dynamic analysis techniques that could be supported 

by trace-based debuggers such as ODB [47, 48]. Using IDEA, it is easy to incorporate debugging 

agents that capture specific execution behaviors such as: 

1. Loops that iterate N times, for some N >= 0 

2. Variables that are read and never assigned or assigned and never read during a particular 

execution 

3. Expressions such as subscripts that fail silently in a context where failure is not being checked 

4. Variables that change their type during the course of execution 

5. A trace of variable states, which allows users to trace backward and see where a specific 

variable was assigned long before it is involved in a crash 
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8.2. Design 

IDEA features novel properties that distinguish it from other debugging architectures. First, it 

provides two types of extensions: dynamic extension on the fly during the debugging session and 

static extension supported by formal steps to migrate and adopt standalone agents as permanent 

debugging features—statically linked into the source code of the debugger. Second, it simplifies the 

extensibility of a source-level debugger, which provides an interactive user interface. This interface 

allows simultaneous agents to be loaded and managed during a debugging session. Finally, this 

simple extensibility may encourage users to write their own agents and incorporate them into a typical 

source-level debugging session. 

IDEA’s agents are able to analyze execution properties and behaviors based on runtime 

information, which they collect while they sit enabled in the background of the debugging session. 

Sometimes, the user may limit an agent to a specific part of the execution by manually enabling and 

disabling it between different execution points. Other times, the agent is programmed to automatically 

trigger information gathering based on some specific runtime properties. For example, an agent can 

automatically watch all while loops or just the one within a specific procedure or method.  

In general, unless an agent depends on information prior to its load time, the user does not need 

to rerun the program whenever a decision is made to incorporate the agent into the debugging session. 

In contrast, most static and dynamic analysis tools and libraries must be linked in advance into the 

source code of the buggy program, or initialized at the start of the host debugger. Moreover, often 

these static and dynamic analysis tools provide no means for the user to control the part of the 

program or the execution interval where the information should be collected or analyzed.  

8.3. Implementation 

IDEA extends the debugging core of a source-level debugger with two major components:  

1. An evaluator that provides the main event filtering and forwarding mechanism, and  

2. An agent interface that facilitates and provides the programming interface for external and 

internal extensions.  

IDEA’s evaluator is comprised of two components that make the source-level debugger an event 

coordinator for the debugging agents; Internals and Externals. These components are abstracted by 

objects, which serve as Proxies for external agents or as Listeners in the case of internal extensions. 

These objects are plugged in to the main debugging loop as extra listeners on the runtime events.  
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IDEA manages and coordinates all extension agents and forwards received events from the 

buggy program into active agents based on their interest. Each agent: 

1. Provides the evaluator with its set of desired events in the form of an event mask 

2. Receives relevant events from the evaluator 

3. Performs its debugging mission, which may utilize execution history prior to the current 

execution state, and 

4. Presents its analysis results back to the user. 

Figure 8.1 shows IDEA’s architecture. When the evaluator receives an event from the buggy 

program, it forwards the received event to those agents that are enabled and requested this event in 

their event mask. For internal agents, this takes the form of a call to a listener method, while for 

external agents it takes the form of a context switch, which the agent sees as a return from its EvGet() 

function. EvGet() is the AlamoDE primitive that resumes the buggy program until the next available 

event. In case of external agents, EvGet() resumes IDEA’s evaluator. 

8.4. Source Code 

IDEA’s debugging core is comprised of five basic classes. One class is general for all extension 

agents, two classes are dedicated for external extensions, and the other two classes are dedicated for 

internal extensions. Figure 8.2 shows IDEA’s UML diagram. 

Figure 8.1. IDEA's Architecture 
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Figure 8.2. IDEA's UML Diagram 
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1. Agent class handles all extension agents’ basic features such as enabling, disabling, and 

constructing their event mask. It provides public methods such as disableAgent(name) that 

disables an agent, enableAgent(name) that enables an agent, and updateMask() that checks 

and updates the event mask of the target debugger whenever an agent is enabled or disabled. 

2. Externals class handles the separately-compiled dynamically-loaded external debugging tools 

that are loaded on the fly. It provides two public methods. The method cmdLoad()loads an 

external agents’ executable and registers it on the fly under its name (the name of the 

executable). The method Forward() checks all active external agents and forwards the 

received event to those that acquire this event in their mask. 

3. ExternalClient class handles information about external agents. Each of the currently loaded 

agents has its own object, which is saved into the active clients list. 

4. Internals class handles the debugging tools that have migrated to internals. It provides the 

Forward() method just like the Externals class. It also provides the register() method that is 

used to manually register agents as internal debugging features.    

5. Listener class handles the entire migrated agents interface. An external agent must be 

subclassed from this Listener class before it can be registered as internal built-in feature. This 

class automatically analyzes and registers the agent’s features.  

8.5. Extensions 

Different agents can be loaded and active, and each agent receives different runtime events based 

on their own event mask. For every received event, IDEA’s evaluator checks for any enabled internal 

and external agent; it forwards events to the enabled ones based on their event mask. Newly activated 

agents start receiving relevant events right after their activation. Disabled agents receive no events 

until they are enabled explicitly by the user. An extension agent may change its event mask during the 

course of execution. A change on any agent’s event mask immediately triggers an update to the event 

mask of the debugging core and alters the set of events received by the debugging core and forwarded 

to the agents.  

8.5.1. Sample Agent 

The code provided in Figure 8.3 shows an example IDEA-based agent that captures the number 

of calls of user-defined procedures, methods, and native built-in functions, and finds the ratio for each 

call type. This provides a rough measure of the degree of VM overhead for a particular application. 
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The class Example() contains three kinds of methods summarize the potential functionalities 

provided by a debugging agent. Agents that follow this method naming convention can be registered 

automatically with the library of internal agents. Otherwise, agents can be registered manually. For 

more information about the migration process see Section 8.5.4. In contrast, external agents require 

no special formatting and no pre-registration. 

Figure 8.3. An IDEA-based Agent Prototype 

$include "evdefs.icn" 

link evinit 

class Example( 

          eventMask, pcalls, fcalls, prate, frate ) 

     method handle_E_Pcall( ) 

          pcalls +:= 1 

     end 

     method handle_E_Fcall( ) 

          fcalls +:= 1 

     end 

     method analyze_info( ) 

          total := real(pcalls + fcalls) 

          prate := pcalls / total * 100 

          frate := fcalls / total * 100  

     end 

     method write_info( ) 

         write(" # pcalls = ", pcalls, "  at rate :", prate) 

         write(" # fcalls = ", fcalls, "  at ratio :", frate) 

     end 

initially() 

     eventMask := cset(E_Pcall || E_Fcall) 

     pcalls := fcalls := 0 

end 

procedure main(args) 

   EvInit(args) 

   obj := Example() 

   while EvGet(obj.eventMask)  do 

      case &eventcode of { 

          E_Pcall:{ obj.handle_E_Pcall() } 

          E_Fcall:{ obj.handle_E_Fcall() } 

          } 

   obj.analyze_info() 

   obj.write_info() 

end 
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1. Event handler methods whose names start with the prefix "handle_" followed by the handled 

event name. Each method processes one event, (i.e. handle_E_Pcall()). The agent’s event 

mask is constructed automatically based on those handler methods. They may collect or 

analyze information based on the received events. 

2. Information analyzer methods whose names start with the prefix "analyze_" followed by any 

name (i.e. analyze_info()). This method analyzes the collected information. 

3. Information or result writer methods whose names start with the prefix "write_" followed by 

any name. This method should write information based on the agent analyses  

(i.e. write_info()). 

8.5.2. External Agents 

External agents can be written and tested as standalone tools, and subsequently loaded on the fly 

and used together during a debugging session—no special registration and no pre-initialization is 

needed. External extensions are managed by three classes: Agent, Externals, and ExternalClient.   

IDEA’s external agents are loaded and controlled by its debugging core. Separately-compiled 

dynamically-loaded external agents receive their information from IDEA’s evaluator, which controls 

them. The external debugging agents’ standard inputs and outputs are redirected and coordinated by 

IDEA’s debugging core. IDEA’s evaluator receives runtime events from the buggy program based on 

the current debugging context, which includes the event masks of enabled external agents. The 

Externals component multiplexes the received events between different external agents. Events are 

forwarded to related active agents.  

Figure 8.4. IDEA’s on-the-fly Extensions (External Agents) 
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An external agent requests events from the IDEA evaluator using the EvGet() primitive, which 

transfers control from the external agent to the extended debugger, see Figure 8.4 above. EvGet() is 

the same primitive that transfers control and acquires events from the buggy program when the agent 

is used in a standalone mode. The Externals component forwards events to any of the external agents 

using the EvSend() primitive, which is used to send the last event received by the evaluator to the 

external agent. A context switch occurs whenever control transfers between the debugging core and 

either a buggy program or an external agent. Event forwarding is accomplished without the 

knowledge of the external agent itself, which means the external agent needs no modification to be 

loaded and used by IDEA’s core. 

8.5.3. Internal Agents 

Besides support for whole programs as external agents, IDEA supports insertion of dynamic 

analyses into the debugging core as listener agents that implement a set of callback methods. IDEA’s 

debugging core implements different built-in agents for different classes of bugs. For performance 

reasons, each agent has its own implementation based on the kind of events that the debugging core 

must monitor in the buggy program.  The Internals component handles the built-in agents. Internal 

agents are called from the main debugging loop with a call to the Forward() method of the Internals 

component, where internal agents are registered during initialization. The Internals component 

checks which agents are active and calls the related underlying method(s) based on the event code 

that is received by the debugging core. See Figure 8.5. 

Figure 8.5. IDEA’s Internal Extensions (Internal Agents) 
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8.5.4. Migration from Externals to Internals 

External agents allow automatic debugging techniques based on various dynamic analyses to be 

developed and tested easily in the production environment. Selected external agents may become 

internal—built-in monitors within the debugging core for improved performance. Internal agents do 

not pay the (lightweight, but still painful) cost of the context-switch communication between the 

debugging core and the external agents. IDEA provides smooth migration from external agents to 

internal. The first issue in migration is to accept a callback-style event listener architecture in place of 

the more general main() procedure that an external agent uses from a separate thread. IDEA provides 

an abstract class called Listener, which must be subclassed within the agent before the external can 

become an internal. The Listener class allows the debugging core to acquire the event mask of the 

migrated internal agents, and to determine which listener methods to use for the various event types. 

The agent prototype discussed in Section 8.5.1 and Figure 8.3 can be used as a standalone 

program or as an external agent under IDEA without any modification. In order to move such an 

external agent to an internal one, the user must derive this Example class from IDEA’s Listener 

abstract class and register it in the Internals class. Whenever its own event mask changes, this 

abstract class helps the Internals class rebuild the event mask for the internal agents and the 

debugging core using the updateMask() method in IDEA’s Agent class. This method updates the 

extended debugger with the new event mask obtained from the internal agent. 

An object of the newly migrated internal agent must be instantiated and inserted into the list of 

clients in the Internals class. This can be done through the method register() from the Internals 

class. For example, to register the prototype Example agent in Figure 8.3 as an internal agent, the 

programmer has to place a call to the method register() in the Init() method of the Internals class 

where the first parameter associates the agent with a formal name as a string ID during the debugging 

session, and the second parameter is an object of that agent class (i.e. register(“calls”, Example())).  

This is the simple automatic registration that applies for agents who follow the sample agent 

convention shown in Figure 8.3 and discussed in Section 8.5.1. To register a complex agent that does 

not follow this sample convention, the method register() can be called with four extra parameters to 

register the method handlers, the analyzers, and the writers respectively along with agent event mask. 

The new internal agent must be stripped of its main() procedure before it is linked into the 

debugging core. Alamo’s EvInit() and EvGet() are no longer needed as it is already performed by the 

debugging core. The mapping of events such as E_Pcall to their listener methods (handle_E_Pcall) 
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is constructed automatically when the Example() class is subclassed derived from the Listener class 

provided by IDEA, see Figure 8.6. 

8.5.5. Simple Agent Migration Example  

Figure 8.3 showed a simple IDEA-based extension agent. Figure 8.6 shows the migration of that 

agent from standalone program to IDEA internal agent. Each monitored event is mapped, in a one-to-

Figure 8.6. Sample Migrated Agent 

$include "evdefs.icn" 

link evinit  

 

class Example ( 

          eventMask, pcalls, fcalls, prate, frate 

          ) 

 method handle_E_Pcall() 

     pcalls +:= 1 

 end 

 method handle_E_Fcall() 

     fcalls +:= 1 

 end 

 method analyze_info() 

     total := pcalls + fcalls 

     prate := pcalls / total * 100 

     frate := fcalls / total * 100  

 end 

 method write_info() 

   write(" # pcalls = ", pcalls, "  at rate :", prate) 

   write(" # fcalls = ", fcalls, "  at ratio :", frate) 

 end 

initially() 

     eventMask := cset(E_Pcall || E_Fcall) 

     pcalls := fcalls := 0.0 

end 

 

procedure main(args) 

   EvInit(args) 

   obj := Example() 

   while EvGet(obj.eventMask)  do 

      case &eventcode of { 

          E_Pcall:{ obj.handle_E_Pcall() } 

          E_Fcall:{ obj.handle_E_Fcall() } 

          } 

   obj.analyze_info();   obj.write_info() 

end  

 

$include "evdefs.icn" 

link evinit  

 

class Example : Listener ( 

          eventMask, pcalls, fcalls, prate, frate 

          ) 

 method handle_E_Pcall() 

    pcalls +:= 1 

 end 

 method handle_E_Fcall() 

    fcalls +:= 1 

 end 

 method analyze_info() 

    total := pcalls + fcalls 

    prate := pcalls / total * 100 

    frate := fcalls / total * 100  

 end 

 method write_info() 

   write(" # pcalls = ", pcalls, "  at rate :", prate) 

   write(" # fcalls = ", fcalls, "  at ratio :", frate) 

 end 

initially() 

    eventMask := cset(E_Pcall || E_Fcall) 

    pcalls := fcalls := 0.0 

end 

 

procedure main(args) 

   EvInit(args) 

   obj := Example() 

   while EvGet(obj.eventMask)  do 

      case &eventcode of { 

          E_Pcall:{ obj.handle_E_Pcall() } 

          E_Fcall:{ obj.handle_E_Fcall() } 

          } 

   obj.analyze_info();   obj.write_info() 

end  
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one relation, into a single method. This conventional format allows the IDEA-based debugger to 

provide automatic registration for the event callback methods and the agent’s event mask. The agent’s 

class has three kinds of methods that are recognized by the automatic registration process. Agents are 

registered automatically with four simple steps: 

1. Derive the agent class from the Listener class provided by the IDEA’s architecture. This 

abstract class analyzes the derived class looking for the three kinds of event handlers. It builds 

a table that maps each prospective event into its handler method, and builds the agent’s event 

mask and updates the core of the extended debugger to request those events from the 

execution of the buggy program. 

2. Place a call to the register() method in the Init() method of the Internal class as follows: 

(register("calls", Example())) 

3. Strip the agent’s main procedure, and 

4. Compile and link the migrated agent into the extended debugger executable. 

When the process of migration has completed successfully, users can use their own agents from 

within the host debugger as internal agents during the debugging session. Agents are distinguished by 

their names. The user can enable or disable the agent facilities on the fly during the debugging session 

by referring to their names. 

8.4.6. Complex Agent Migration Example 

Complex agents do not follow the naming convention discussed in Section 8.4.1. The method 

names of these agents have no restriction. However, the user has to classify the agent’s methods into 

handlers, analyzers, and writers. This kind of agent is registered in a similar way to the simple agents 

discussed in the previous section. However, the user has to place a call to the register() method of the 

Internals class with four extra parameters, which are used to register the handler methods, analyzer 

methods, writer methods, and  the agent’s event mask. Figure 8.7 shows the call to the register() 

method that manually registers the Example class as shown in Figure 8.3.  

register("calls", Example(),  

              ["handle_E_Pcall()","handle_E_Fcall()"], 

              ["analyze_Info"], 

              ["write_Info"], 

              cset(E_Pcall || E_Fcall) ) 

 
Figure 8.7. Explicit Agent Registration 
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This type of registration provides users with enough freedom to write their own standalone 

agents in the way they want, and allow them to integrate those as internals with the least possible 

modifications. Moreover, this explicit registration does not disable the automatic registration; the 

automatic registration is always applied. If there is any method that is following the naming 

convention introduced earlier, they are automatically registered. This explicit registration provides an 

addition on top of the automatic registration, and removes the restriction of one handler per-event 

required in the automatic registration. 
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Chapter 9  

UDB: The Unicon Source-Level Debugger 

This chapter presents the design and implementation of UDB [121,122], a source-level debugger 

for the Unicon [3, 4] and Icon [6, 7] programming languages. UDB is an event-driven agent-oriented 

extensible source-level debugger. It is written in Unicon on top of the AlamoDE debugging 

framework presented in Chapter 7, and the IDEA architecture presented in Chapter 8. UDB combines 

classical debugging techniques such as those found in GDB with a growing set of extension agents. 

Unlike ordinary debuggers, which are usually limited in the amount of analysis that they perform in 

order to assist with debugging, UDB’s design and implementation proves three hypotheses: 

1. A source-level debugger built on top of an event-driven debugging framework can surpass 

ordinary debuggers with more debugging capabilities 

2. A debugger based on a high-level framework allows an easy and efficient agent-based 

extension, and 

3. An agent-oriented debugger is easier to extend on the fly with new agents that utilize 

automatic debugging and dynamic analysis techniques. 

This chapter is based on material presented in [121, 122]. 

9.1. UDB’s Debugging Features 

UDB provides typical debugging techniques such as breakpoints, watchpoints, single stepping 

and continuing, and stack navigation. At the same time, it has a rich set of advanced debugging 

features. The underlying event-driven architecture empowers UDB with advanced debugging 

techniques. First, it features more powerful watchpoints that support advanced language features such 

as dynamic typing and string scanning. Second, it provides tracepoints that allow the ability to trace 

specific execution behaviors of procedures, built-in functions, and language operators. Finally, it 

supports outstanding extensibility provided by the IDEA architecture. This allows experienced users 

to write their own custom debugging agents, test them as standalone programs, and use them on the 

fly during UDB debugging sessions or incorporate them into UDB’s source code as permanent 

debugging features. 
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9.2. Design 

UDB employs AlamoDE’s thread model of execution monitoring, where the debugger and its 

buggy program are in separate threads in a shared address space. The IDEA architecture allows UDB 

to provide advanced debugging features through multiple simultaneous agents. As it is stated in 

Chapter 8, UDB’s extension agents are written and tested as standalone tools and then loaded and 

managed on the fly by its IDEA architecture during a typical debugging session. Successful external 

agents may be promoted to internal built-in features within the debugging core for improved 

performance. Agents are suspended whenever a breakpoint or watchpoint is reached, and they are 

resumed when the buggy program is resumed. UDB provides smooth migration from external agents 

to internals. See Section 8.4 for more details on the migration procedure. 

By design, most of UDB’s commands resemble those of GDB. This provides familiarity and 

ease of use for programmers who switch between languages frequently. In addition to GDB’s 

command set, UDB adds a handful of simple but general commands that load, unload, enable, and 

disable its extension agents. This simplifies the extensibility, especially for typical users and novice 

programmers who may want to benefit from existing agents.  

$ udb sort 

        UDB Version 1.5, January 2009. 

        sort : loaded 2.5K bytes of 32-bit uncompressed icode 

        1 Source file(s) found 

        Type "help" for assistance 

(udb) break BubbleSort 

 Breakpoint set successfully in: 

        1#  sort.icn(5): BubbleSort( A ) 

(udb) run 

 A =[4,1,8,9,0,6,5,7,2,3] 

        Breakpoint:        sort.icn(5): BubbleSort( A ) 

(udb) enable –agent failedloop 

 The agent failedloop is enabled  

(udb) cont 

        loop: failed while  

        sort.icn(10): while swapped ~== "true" do{  

(udb) quit 

        sort is running, are you sure you want to quit,(Y/n)?:y 

        Thank you for using UDB, Goodbye ! 

$ 

Figure 9.1. Sample UDB Debugging Session 
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Figure 9.1 shows a sample UDB debugging session. The target program sorts an array of 

integers using the bubble sort algorithm, which uses a while loop. Line 14 in the figure enables the 

internal agent named loop to watch for while loops that iterate zero times. Then lines 17 and 18 show 

the loop agent printed a message about a failed while loop detected at line 10 of the target program’s 

source file named sort.icn. 

9.3. Debugging Core 

UDB’s debugging core provides the main debugging features and user interface. It is comprised 

of four major components: 1) a console, 2) a debugging session, 3) an evaluator, and 4) a debugging 

state. UDB’s debugging core manages all of the built-in classical debugging techniques, and 

coordinates the operations between the extension architecture, the buggy program, and the user 

interaction. Figure 9.2 shows UDB’s architecture and Figure 9.3 shows UDB’s UML diagram.  

Figure 9.2. UDB’s Debugging Architecture 
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Figure 9.3. UDB's UML Diagram 
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9.3.1. Console 

The top level component in UDB’s debugging core is the console. It provides a user interface 

supported by a command interpreter for user control. It receives a command line from the user and 

parses it into a list of tokens. The first element in the list is the UDB command followed by its 

arguments. This command list is passed into the second component which is the debugging session. 

The source code of this component is modeled by one class named Console. 

9.3.2. Session 

The second component in UDB’s debugging core is the debugging session. It initializes and 

manages the state of the debugger and controls its debugging evaluator. At the start of every 

debugging session, it loads the target program and analyzes its bytecode. The source code of this 

component is modeled by two classes:  

1. The Session class initializes the debugging state and loads the subject program. It interprets 

all of the commands that are received from the console 

2. The Helps class provides the basic in-line help functionalities. It reads the debugging state 

and provides information about commands based on the current debugging context. 

9.3.3. Debugging State.  

The third component in UDB’s debugging core is the debugging state. Initially, the session 

component initializes this debugging state. At the start of every debugging session, the debugging 

state is loaded with the available source files and the executable’s symbol table. It analyzes the 

semantic properties of global variables, packages, classes, methods, procedures, and built-in 

functions. This information assists the debugger and the user with execution state inspection and 

source code information. This debugging state is updated and maintained during the debugging 

session based on the user interaction and the state of the buggy program. The source code of this 

component is modeled by four classes: 

1. The DebugState class encapsulates the entire debugging state; it has attributes and flags to 

control the debugger such as what event codes and values the debugging evaluator should be 

receiving from the buggy program. 

2. The Icode class opens and analyzes the program’s executable virtual machine binary in order 

to obtain static information about the executable program. The most important information 
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obtained is a list of all the names of the source files that are contributed to the executable, 

including library files. 

3. The SourceFile class opens and organizes the source files that were compiled and linked to 

construct the program. It provides the ability to search and locate source lines and procedures. 

4. The SymbolTable class analyzes global names found in the executable. This class maintains 

the executable’s semantic properties such as global variables, procedures, packages, class, and 

methods. 

9.3.4. Evaluator 

The final component in UDB’s debugging core is the debugging evaluator. This evaluator 

provides the main event-driven debugging analysis and monitoring control. Built-in debugging 

features such as breakpoints, watchpoints, tracepoints, stepping and nexting are implemented by 

internal monitors that are built into UDB’s debugging core. By default, UDB’s evaluator monitors the 

E_Error, E_Exit, and E_Signal events, see Table 9.1. The event masks of enabled built-in features 

and extension agents are added to this set of events. On the fly, UDB’s evaluator starts asking the 

buggy program about those extra events. When the evaluator receives an event from the buggy 

program, first it checks whether any classical action is needed such as a breakpoint, or watchpoint. 

Then it checks the extension architecture, which checks its enabled internal and external agent; it 

forwards events to the enabled ones based on their event mask. The source code of this component is 

modeled by seven classes; see UDB’s UML diagram presented in Figure 9.3 above: 

1. The Evaluator class implements the main core of the debugging control as an AlamoDE 

execution monitor. It performs many activities such as: 1) activating the subject program, 2) 

collecting events out of the subject program, 3) filtering and analyzing according to the 

debugging context, 4) and forwarding events to all of the classical and advanced debugging 

facilities. 

2. The BreakPoints class implements an event-driven breakpoint mechanism by monitoring the 

E_Line execution event. Each breakpoint is represented by an instance of the Breakpoint 

class. See Section 9.4.2. 

3. The WatchPoints class implements a software watchpoint mechanism by monitoring 

different kinds of events for different watchpoints. Each watchpoint is represented by an 

instance of the Watchpoint class. See Section 9.4.3. 
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4. The TracePoints class implements an event-driven execution behavior trace by monitoring 

various execution events based on the requested trace behavior. Each requested trace 

represented by an instance of the Tracepoint class. See Section 9.4.4. 

5. The Stepping class provides single stepping, nexting, and continuing related commands. It 

monitors the E_Line execution event for some commands, while for others it monitors the 

level (&level) of the stack, especially for commands such as return and next. See Section 

9.4.5. 

6. The Stack class provides facilities to explore the execution stack. It implements basic stack 

related commands such as up, down, frame, and backtrace. See Section 9.4.6. 

7. The Data class provides facilities to explore execution data and modify it. It also provides 

static and semantic information about the executable. For example, it implements basic UDB 

commands such as print, list, and src. See Section 9.4.7. 

9.3.5. Generators 

The debugging Session and the debugging Evaluator are generators, expressions that suspend 

values to the caller and are resumed to produce additional values [4, 6]. The diagram in Figure 9.2 

shows the control flow inside UDB and how its generators are related to each other. The evaluator 

generator provides the ability to suspend its main monitoring loop without losing its state. Then 

control is transferred into its caller, which is another generator called the session generator. The 

session generator is where the state of the debugging session is saved and later resumed when the user 

resumes the execution of the buggy program after some investigation in the console interface. This 

session generator provides implicit ability to maintain the debugging session and the state of the 

evaluator generator before handing control to the console. This mechanism provides the capacity to 

Table 9.1. UDB's Default Monitor Events 

# Event Code Description  

1 E_Exit Reports when the target program terminates normally 

2 E_Error Reports when the target program terminates abnormally  

3 E_Signal Reports when the target program receives an unhandled signal 

4 E_MXevent Reports when a GUI event is handled properly in any of the GUI 

loaded based external agents 
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continue debugging by resuming the generator of the debugging session, which continues from its 

previous state and resumes the evaluator at the point that was suspended. 

Those generators allow a clean design that includes two nested loops. First loop is the main 

console based interface. This loop interprets commands from the user and passes them to the 

debugging Session. Second loop is the main debugging session loop that iterates until the buggy 

program is terminated. The implementation of these generators has little impact on UDB’s overall 

performance. They are only resumed after a command line used by the user and they are suspended 

based on some debugging context that has to be presented to the end user. So, the time complexity of 

these generators is not noticeable by the end user. 

For example, if the received event represents a runtime error E_Error, then the generator of the 

debugging evaluator terminates, returning control to the debugging session. The debugging session 

saves its state and transfers control back to the console, where the user can investigate. However, if 

the received event represents any other action such as a breakpoint or a watchpoint, or a bug has been 

detected, then the generator of the debugging evaluator suspends, thereby saving its state, and 

transfers control to the debugging session. The debugging session transfers control back to the 

console with the right message based on the current debugging context and the debugging state. In the 

console, the user may choose to investigate or resume execution, at which point the generators of the 

session and the evaluator are resumed. 

9.3.6. Main Debugging Loop 

The code in Figure 9.4 starts with the while loop. In each iteration, EvGet() activates the buggy 

program looking for an event. Events received by the debugger are further filtered, and additional 

state inspection performed, as part of the execution monitor’s analysis. The main debugging action is 

maintained in both the State and the RunCode attributes of the DebugState class. At the end of the 

loop and before reactivating the buggy program for a new event, the debugging State is checked to 

decide if the loop has to be suspended, or returned, or just has to look for another event. 

9.4. Implementation 

UDB implements its classical debugging techniques as well as its advanced agents by 

monitoring the buggy program for runtime execution events. This section provides implementation 

details about UDB’s various debugging techniques. 
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while EvGet(DState.eventMask, DState.valueMask) do { 

     case &eventcode of{ 

            E_Line:{ 

                if *DState.breakMask  >  0   then Break.checkBreakpoint() 

                if DState.RunCode = NEXT then{ Step.checkNext() } 

                if DState.RunCode = STEP then{ Step.checkStep() } 

                } 

            E_Assign | E_Value :{ 

                if *DState.watchChangeMask > 0  then Watch.checkWatchChange() 

                } 

            E_Deref:{ 

                if *DState.watchReadMask   > 0  then Watch.checkWatchRead() 

                } 

            E_Spos | E_Snew:{ 

                if *DState.watchChangeMask > 0  then Watch.checkWatchScan() 

                } 

            E_Exit:{ 

                DState.State := END 

                } 

            E_Error:{ 

                DState.State := PAUSE 

                DState.RunCode := ERROR 

                handleRunError() 

                } 

            E_Signal:{ 

                DState.State := PAUSE 

                DState.RunCode := SIGNAL 

                }  

            } # end of case ecode 

 

      if *DState.traceMask > 0 & member(DState.traceMask, &eventcode) then   

         Trace.TraceBehavior() 

      if Internal.enabled  > 0 &  member(Internal.eventMask,  &eventcode) then 

         Internal.forward() 

      if External.enabled > 0 &  member(External.eventMask, &eventcode) then 

         External.forward() 

 

      if Dstate.State = PAUSE then   suspend 

      if Dstate.State = END      then   return 

      }# end of while 

Figure 9.4. UDB’s Main Debugging Loop 
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9.4.1. Loading a Buggy Program 

UDB dynamically loads the program’s binary executable, see Chapter 5. At load time, UDB 

analyzes the code in order to obtain a complete list of source file names in use; including library files. 

When a program is loaded, UDB builds its related symbol table with fields including: all global 

variables, procedures, built-in functions, records, classes and their methods, and all packages and 

their global variables, classes, and procedures. 

 9.4.2. Breakpoints 

UDB’s breakpoints are implemented by monitoring the line number event E_Line only when 

there is at least one breakpoint in the debugging session. Furthermore, UDB processes a line number 

event only when that line number has a predefined breakpoint on it. Utilizing the value mask of the 

AlamoDE framework approximates this implementation. This value mask provides an extra 

condition, applied on the event value. It limits the line number event code E_Line to those values 

provided by the value mask, see Figure 9.5. 

method checkBreakpoint() 

  local  cur_file, cur_line, L, x, id 

 

  cur_file := keyword("file", Monitored) 

  if L := member(breakPoints, cur_file) then{ 

     cur_line := &eventvalue 

     every x := !L do{ 

        if cur_line = x.line & x.state = ENABLED &  

                                        id := isBreakExist(cur_file,cur_line) then{ 

           DState.State := PAUSE 

           # Temporarily remove the breakMask set from the valueMask table 

           # until the “continue” command is applied. This allows the "next" and "step" 

           # commands to operate 

           delete(DState.valueMask,E_Line) 

           msg   :="\n   Breakpoint # "||id||" at : "|| cur_file||":"||cur_line||"." 

           DState.Write(msg) 

           return 

           } 

        } 

end 

 
Figure 9.5. UDB’s Implementation for Breakpoints 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 



107 

In this implementation, there is only a context switch if the line number event and its value are 

satisfied. For example, when the user applies a breakpoint command, UDB checks its location within 

the program’s source code, to ensure the line number is within the file and it has an executable 

statement. It inserts the E_Line event code to the set of monitored events; the event mask. At the 

same time, it associates this event mask with the line number of this breakpoint. So, the internal 

instrumentation will only report the E_Line event for those lines that match one of the lines found in 

the value mask. For the sake of better monitoring consistency, a breakpoint on a procedure or method 

is converted internally into a breakpoint on a line number, which is the line number of the procedure’s 

header. Figure 9.5 shows the checkBreakpoint() method, which is called by UDB’s evaluator when 

the E_Line event is reported. In line 4 of the figure, UDB inquires the current executable file name, 

using the built-in function keyword("file", Monitored), to ensure the reported line number event is 

from the right file name. Alamo’s E_Line filtering mechanism of event mask and value mask does 

not check for the program source file. This induces a false positive report of the E_Line event when 

its value is satisfied regardless of the source file.  

9.4.3. Watchpoints 

UDB’s watchpoints are implemented by monitoring the assignment event E_Assign only for 

those variables that have predefined watchpoints on them. Utilizing the value mask over the 

E_Assign event approximates this implementation in a technique similar to the one discussed in 

Section 9.4.2. This implementation takes advantage of the dynamic event masking and value masking 

provided by AlamoDE. For example, when the user applies a watchpoint command, UDB resolves its 

scope and inserts the E_Assign event code to the set of monitored events; the event mask. At the 

same time, it associates this event mask with the name of this watched variable. So, the internal 

instrumentation will only report the E_Assign event for those assignments that are related to that 

exact variable.  

After the watchpoint command is applied, UDB starts monitoring this E_Assign event. The 

method checkWatchChange() provided in Figure 9.6 shows UDB’s implementation for typical 

watchpoints that check whenever a variable is assigned. The event value of the E_Assign event is the 

name of the variable to be assigned. The event is reported right before the assignment is 

accomplished. In order to obtain the new value to be assigned, AlamoDE provides the E_Value 

event. This event is always associated with the E_Assign event and reports the assigned value. For 

performance reasons, UDB’s evaluator monitors the minimum number of events based on the current 

debugging context. After UDB validates that the reported E_Assign has a currently enabled 
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watchpoint on it, it obtains this variable value by updating the event mask with a new event code 

E_Value before re-activating the target program, see line 12 of Figure 9.6. This allows the target 

program interpreter to report the value of the assigned variable as soon as that variable is assigned. 

After the watchpoint is reached, this event code E_Value is removed from the set of monitored 

events, see line 21 of Figure 9.6. 

method checkWatchChange( ) 

   static var, viv, hit := 0, evalue := 0 

 

   if &eventcode == E_Assign &  

      member(DState.watchChangeMask,&eventvalue) & 

      (viv := varInfo[&eventvalue]) & viv.state = ENABLED  then{ 

      var := &eventvalue 

      if /viv.hitMax   | viv.hitMax < 0 | (viv.hitCount < abs(viv.hitMax)) then{ 

         hit := 1 

         if not member(DState.eventMask, E_Value) then{ 

            evalue := 1 

            DState.eventMask ++:= cset(E_Value) # adds E_Value to the value mask 

            } 

         return 

         } 

      } 

   else if &eventcode == E_Value & hit=1 then{ 

      hit := 0 

      if evalue = 1 then{ 

         evalue := 0 

         DState.eventMask --:= cset(E_Value) # removes E_Value to the value mask 

         } 

      viv.oldValue := viv.curValue 

      viv.curValue := &eventvalue 

      if \viv.catchValue then 

         checkCatchValue(var) 

      else 

         printWatchedVarInfo(var) 

      return 

      } 

end 

Figure 9.6. UDB’s Implementation for Watchpoints Check 
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9.4.3.1. Advanced Watchpoints  

Besides typical watchpoints that observe variables being assigned, UDB supports special 

watchpoints that deal with advanced language features such as string scanning environments and 

implicit type changing. UDB’s watchpoints are capable of observing expressions such as: 

1. Variable assignment. See awatch command in Appendix A.8. 

2. Variable read (dereferenced). See rwatch command in Appendix A.8. 

3. Variable assigned a value different from the previous value. See vwatch command in 

Appendix A.8. 

4. Variable assigned and the new type is different from the previous type. See twatch command 

in Appendix A.8. 

5. A keyword explicitly assigned by the program’s code, and 

6. An implicit string scanning environment is changed by the string scanning primitives; mainly 

the &subject and &pos keywords. See swatch command in Appendix A.8. 

For example, the command swatch observes every operation on a string scanning environment 

and shows a window of the scanned string along with other information such as the old position, the 

new position, and the delta between them. 

UDB’s watchpoints may cause the program to stop, or they may work silently collecting 

information about specific evaluation(s). Silent watchpoints collect location and value about specific 

evaluations without pausing the program’s execution. The user may review collected information at 

any point during or after the execution. Regardless of whether the watchpoint is silent or not, the user 

is able to set a watchpoint for a limited number of satisfied incidents. See Appendix A.8. 

9.4.3.2. Watched Variables 

When reported in an Alamo event value, variable names are mangled with scope code characters 

that identify the scope of the reported variable. The characters ―–‖, ―^‖, and ―:‖ are appended along 

with the procedure name to distinguish normal local, parameter, and static variables respectively. 

Global variables are distinguished using the ―+‖ character attached to the end of the variable name 

[108]. The potential value mask associated with the E_Assign event is a set consisting of the 

watched (monitored) variables. This value mask eliminates the E_Assign event from being reported 

for similar variable names found in other procedures. 



110 

UDB uses these scope codes while watching variables. When the buggy program is loaded but 

not running yet, the user can set watchpoints on valid keywords, global variables, and local variables 

that are provided by the command as mangled variables (i.e. watch a-main). When the program is 

stopped for a breakpoint, the user can set watchpoints on valid keywords, locals that are mangled with 

their scope name, locals that are not mangled but live in the currently selected stack frame, and of 

course global variables. 

Locals that are mangled and their procedures are currently active on the call stack are verified 

based on dynamic information from the current execution state. Otherwise, UDB uses the static 

information collected from the buggy program at load time to ensure that those variables are valid. If 

the variable is not mangled, UDB automatically resolves the scope based on the currently selected 

stack frame and the current execution state. By default, when a plain variable is specified by the 

watchpoint command, UDB checks whether it is a keyword. If it is not a keyword, then UDB looks it 

up in the currently selected stack frame. If this variable name is neither a keyword nor a local 

variable, then UDB looks it up in the global variables. Otherwise, UDB complains with an error 

message. 

9.4.4. Tracepoints 

UDB’s tracepoints are another extension that goes beyond the capabilities of breakpoints and 

watchpoints found in conventional debuggers. Using execution behavior tracing, a user is able to stop 

the execution based on potential behaviors such as the type of the returned value from a user-defined 

procedure, built-in function, and language operator. For example, often programmers write their 

functions and procedures to return a specific value as an error code, which may describe an 

unfinished or failed job. UDB’s tracepoints allow a user to place a tracepoint on a specific procedure 

returned value. The command ―trace bar return <= 1‖ sets a tracepoint on procedure bar whenever 

it returns a value <= 1. 

This type of tracing provides additional flexibility in order to simplify and speed up the process 

of discovering bug locations. The user can check the traced info from any point during or after the 

execution. Traced execution behaviors are divided into two categories: 1) general behaviors, which 

are described by the words start and end, and 2) detailed behaviors, which are used to describe more 

details about the start and end. The start behavior can be broken down into call and resume, 

whereas the end behavior is broken down into return, suspend, fail, and remove. For example, the 

command ―trace 10 bar resume‖ sets a tracepoint on procedure bar for the first 10 times it 
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resumes, see Appendix 1.9. Behaviors are associated with the semantics of the Unicon/Icon language, 

see Table 9.2. 

9.4.5. Stepping and Continuing 

UDB implements the step and next commands using the line number event E_Line. However, 

the implementation of the next command ensures that the event from the line number change E_Line 

is never preceded by any procedure call event E_Pcall. If a procedure call event occurs, UDB ignores 

line number changes until the program returns from all of the procedures that were called on that line 

where the next command was applied. On the other hand, the continue command resumes the buggy 

program at its full speed. Its implementation is accomplished by removing the line number event 

E_Line and the procedure call event E_Pcall from the monitoring event mask unless they are needed 

by another currently enabled debugging feature. 

Figure 9.7 and 9.8 show the implementation of the two methods responsible for the next 

command in UDB. First, the implementation of the next command is provided by the 

cmdNext(cmd) method in Figure 9.7. It receives a command from the user and updates the 

debugging state with the NEXT flag. It checks and saves the current stack level using 

keyword("&level", Monitored) function. This level is used by the second method named 

Table 9.2. UDB's Tracepoints 

Behavior Description 

start Represents the general call or resume of a procedure, built-in function, or operator 

end Represents the general return, fail, suspend, and remove of a procedure, built-in 

function, or operator 

call represents normal procedure, built-in function, or operator call 

resume Represents the resumption of a suspended procedure, built-in function, and 

operator 

return Represents exiting a procedure with the language keyword return. For built-in 

functions and operators represents the behavior of finishing a successful call 

fail Represents exiting a procedure with the language keyword fail or reaching the end 

of the procedure. For built-in functions and operators represents the behavior of 

failing to accomplish the intended job 

suspend Represents suspending with the language keyword suspend 

remove Represents removing a suspended procedure, built-in function, or operator as a 

result of exiting a parent procedure, built-in function, or operator 
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checkNext() provided in Figure 9.8. This method is called at every line number change E_Line 

event after the next command is applied. It checks for the appropriate line where to stop after the next 

command. It also inquires the keyword &level of the buggy program and compares its value against 

the level obtained when the command was applied. 

 

# checks for the appropriate line where to stop after the next command.  

method checkNext() 

   local  level 

   level := keyword("level", Monitored) 

   if level > nex_level then  

      nextCount +:=1 

   if level = nex_level then{ 

      if nextCount > 1 then {  nextCount -:= 1     }       

      else if next_count = 1 then{ 

         nextCount := 0 

         stepCount := 1 

         DState.State        := PAUSE 

         DState.RunCode := STEP 

         } 

      } 

end 

 
Figure 9.8. Implementing Next within the Evaluator 
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# starts the next command 

method cmdNext(cmd) 

   local count 

   if DState.State = PAUSE & DState.RunCode ~= ERROR then { 

      if count := integer(cmd[2]) then  nextCount := count 

      else                                             nextCount := 1 

      nex_level := keyword("level", Monitored) 

      DState.Update(NEXT) 

      DState.Write("   Nexting.") 

      } 

   else { 

      DState.State := ERROR 

      msg   := "\n   The program is not being run._ 

                     \n   Try \"run\", or Type \"help\" for assistance" 

      DState.Write(msg) 

      } 

end 

 

 

 

# checks for the appropriate line where to stop after the next command.  

method checkNext() 

   local  level 

   level := keyword("level", Monitored) 

   if level > nex_level then  

      nextCount +:=1 

   if level = nex_level then{ 

      if nextCount > 1 then{ 

         nextCount -:= 1 

         } 

      else if next_count = 1 then{ 

         nextCount := 0 

         stepCount := 1 

         DState.State        := PAUSE 

         DState.RunCode := STEP 

         } 

      } 

end 

 

Figure 9.7. Initiating a Next Command 
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9.4.6. Stack Navigation 

When a program performs a procedure call, information about the call is generated and saved in 

the execution stack in blocks called procedure frames, which are distinguished by their level. Each 

frame includes arguments and local variables of the called procedure. The procedure frame is saved 

on the stack until the procedure is returned. However, when the program is stopped, UDB provides 

the ability to investigate where and/or how the program’s execution got to this point. By default, 

when the buggy program stops, UDB points implicitly to the current procedure frame, which is the 

last frame on the execution stack. When the program is stopped, the current frame is frame number 0. 

In contrast, the oldest frame on the stack has the biggest frame number, which is the frame for 

procedure main(). UDB allows a user to explicitly jump to any other frame. UDB associates 

procedure frames with the exact statements in the source code that instantiated them by utilizing the 

AlamoDE keyword() primitive to find relevant keyword values such as &file, &line, and &level. 

9.4.7. Data Navigation/Modification 

UDB provides the ability to examine and change data during the execution. Specific variables, 

keywords, and data structures can be looked up and modified during the debugging process using the 

variable() primitive. When a variable is looked up, its type is checked implicitly to assist the user 

better. If the target variable has an Atomic Type such as null, integer, real, cset, or string, then the 

presented value is the variables current value. Otherwise, if the target variable has a Structured Type 

such as list, table, record, set, procedure, or window, then UDB provides the user with a string 

representation of the referenced structure. An image of a structure is the internal name of that 

structure associated with its serial number and the number of elements or fields inside. In contrast, the 

ximage of a structure is a string containing the elements of that structure and its substructures. 
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Part IV 

Extension Agents  
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Chapter 10  

UDB’s Advanced Debugging Agents 

Bugs vary in their root causes and their revealed behaviors; some may cause a crash or a core 

dump, while others may cause an incorrect or missing output or an unexpected behavior. Moreover, 

most bugs are revealed long after their actual cause. A variable might be assigned early in the 

execution, and that value may cause a bug far from that last assigned place. This often requires users 

to manually track heuristic information over different execution states. This information may include 

a trace of specific variables’ values and their assigned locations, procedures and their returned values, 

and detailed execution paths. 

10.1. UDB’s Extensibility 

UDB’s breakpoint based debugging provides the ability to control the execution of the buggy 

program by stepping and continuing, and the ability to investigate the current execution state. This 

style of debugging is not always good enough. Augmenting UDB with various agents is one way to 

improve its standard debugging process. For UDB, agents may retain information beyond the current 

state of execution and perform automatic and dynamic analysis techniques. In some cases the agent is 

confident that it has found a bug and in others it issues an appropriate warning. Either way, the 

combination of valgrind-style [18] dynamic analysis within an interactive debugger makes both 

methods more effective. 

Taking advantage of the IDEA architecture presented in Chapter 8, UDB allows various agents-

based tools and techniques to be used during a debugging session. Any event-driven AlamoDE-based 

standalone program can be loaded and used on the fly during a debugging session. External agents are 

enabled at load time but may be explicitly disabled and re-enabled by the user at will. Originally, 

some of UDB’s agents were written and tested as standalone programs, used as external debugging 

agents under UDB, then migrated to internals for reasons that include: 

1. Better performance. External agents are used through context switches whereas internal agents 

are used through a relatively faster procedure call mechanism 

2. Better availability. Unlike external agents that must be located and loaded for every 

debugging session, internals are always available and the user has only to enable them when 

they are needed. Internal agents are distributed with the source code of UDB 
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3. Agent collaboration. Some internal agents can be used from within the temporal logic 

operators, which are another set of internal agents. So, dynamic temporal assertions allow 

some agents to implicitly use other agents, see Chapter 11 for more information. 

Currently, UDB has a library of different internal agents, which monitor different behaviors such 

as memory allocations, garbage collections, loop iterations, loop times, and procedure times. Internal 

agents are disabled by default; the user has to enable them explicitly during the debugging session. 

This chapter presents three kinds of UDB’s potential extension agents.  

10.2. Visualization Agent 

Visualization tools are standalone graphical tools used to summarize and depict execution 

properties and present their analyzed data by visual means. Figure 10.1 shows an example of two 

visualization tools loaded on the fly at the beginning of a UDB debugging session. These tools are not 

interactive; they work simultaneously in the background of the debugging session. 

The debugging session in Figure 10.1 shows a moment during an execution of the Unicon 

translator under UDB (a preprocessor that translates Unicon down to Icon). During this debugging 

session, the translator was given a relatively large Unicon module (idol.icn, 1235 lines) as input. The 

upper tool shows an incremental view of the total memory allocations in both of the string and block 

regions. The lower tool presents the allocation and usage of various data types. Each allocation type is 

coded in a different color. The upper row of pie charts shows the percentage of total allocations, 

number of allocations, string allocations, block allocations, and number of created structures 

respectively. The second row shows the usage of each one of those data structures starting with list, 

tables, sets, records, and the usage percentage of all data structures in use. 

These visualization tools are used as external agents and have not been migrated to internals. 

However, these tools being loaded and used within a typical interactive session, the user is able to 

manipulate the target’s program control and data flow through means of breakpoints and watchpoints. 

For example, the user can place a breakpoint on some line number and stop the program. This allows 

the user to check the tools’ results up until that point. It is also possible to single step the execution 

and simultaneously check the incremental progress in the visualization process.  Moreover, if any of 

these tools are used in a standalone mode, the user will have no control over the execution of the 

monitored program unless it is already supported by the tool’s user interface.  
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10.3. Language-Specific Agents 

UDB employs a set of internal agents to locate numerous potential bugs associated with the 

semantics of the Icon and Unicon languages. UDB’s IDEA support provides commands to enable and 

disable such agents, see Appendix A.16. Those agents monitor execution behaviors looking for 

specific symptoms such as: 

1. Variables that may change their type during the course of execution 

2. Expressions that may fail silently in contexts where failure is not being checked, and 

3. Redundant implicit type conversion which may hurt the execution performance.  

The following subsections provide a discussion for each one of these agents. 

 

 

 

Figure 10.1. UDB's on-the-fly Visual Extensibility 
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10.3.1. Variable Changing Type (or Domain) 

Unicon is a dynamically typed language; no variable declaration is needed and a variable can be 

assigned values of different types. Such type changes are not a good programming practice; they 

usually indicate a logical error and/or complicate any reading of the source code. This agent catches 

such dynamically typed variables by monitoring every assignment and checking whether it produces 

any type change on the assigned variable. This detection is based on two consecutive events: 

E_Assign and E_Value which are the event code of the assignment and assigned value respectively.  

This agent’s implementation is very expensive. It can be enhanced with information from the 

static type inference used originally by the Icon’s compiler named iconc [128] used in Unicon when 

the -C option is used on the command line [129, 130]. This type inference output may limit the 

detection process to a much smaller subset of suspicious variables. 

10.3.2. Failed Expressions 

Unicon’s logic programming flavor of failure and success has its advantages. But, if it is not 

used properly, it will induce side effects into the execution of the program. In practice, not all failures 

are intentional. Sometimes, a failure can point at a potential cause of a bug.  For example, Unicon’s 

lists are dynamic in size. If the program tries to access an element beyond the list’s actual number of 

elements, the operation fails silently. This semantic is useful in conditional expressions, but in 

ordinary code it usually indicates a bug. 

In UDB, users can request notification about unchecked failed expressions, and they can decide 

for themselves whether it is a bug or not.  This agent performs the suspicious failure check by 

monitoring failures in various expressions and built-in operators and reports where and when that 

failure was happened. An example, of the monitored events is E_Efail, E_Ofail, and E_Ffail which 

they report after expression failures, operator failures, and built-in function call failures respectively.   

10.3.3. Redundant Conversion 

A program’s poor performance might be unexplainable, especially if the complexities of the 

algorithms do not indicate that performance should be slow. This slow down might be caused by any 

number of bad programming practices. In Unicon, one common performance bug results from 

frequent redundant type conversions. 
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This agent automatically detects such potential performance bugs. It starts by tracking implicit 

type conversions at every location and analyzes the frequent conversions and their locations. This 

detection is based on two events: E_Sconv and E_Tconv, which report the successful conversion 

and the result type of the conversion respectively. 

10.4. Language-Independent Agents 

Finally, UDB is extended with two sets of general agents: data and behavior related agents. This 

set of agents is called Atomic for their tiny sizes and outcome results that produce a value, which may 

be boolean, numeric, string, or even a structure. They facilitate simple but common operations during 

the debugging process and provide extra heuristic information with easy processing. These two sets of 

agents can be used as standalone internal agents or as atomic operations applied by UDB’s dynamic 

temporal assertions presented in Chapter 11. These extension agents expand the usability of UDB’s 

built-in features with the ability to validate more specific data and behavioral aspects of the execution 

properties.  

10.4.1. Data Related Agents 

This category of extension agents is used to retain and process data in relevance to the execution 

state. Data agents are used to utilize advanced on demand specific data tracing techniques. The user 

can enable and disable those agents to work on different variables; each agent can be enabled several 

times, each on a different variable provided by the user at enabling time. See Table 10.1 for a list of 

all UDB’s atomic data extension agents. 

 For example, depicting a variable’s initial, previous, current, or next value can be critical in 

understanding the evaluation of an expression and the execution of the program. Normally a user can 

place a watchpoint on specific variable to inspect its value during the execution. This watchpoint 

notifies the user whenever the target variable is changed or even read. Then the user has to write 

down or memorize these values trying to understand how the evaluation develops during the 

execution. Sometimes, the user may end up doing some calculations on those written down data such 

as finding the minimum, maximum, sum, and average. Or even carefully watch those values to find 

when a new maximum or new minimum is reached. UDB provides various agents that can be 

employed to semi-automate such a process and save the user’s time and effort. These data related 

agents can allow the user to automatically collect various properties about specific variables and 

retain them whenever it is needed.  
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10.4.2. Behavior Related Agents 

During a debugging process, a user may try to understand the behavior of the execution by 

watching specific runtime properties such as the number of times a loop has been iterated or the 

number of times a procedure has been called, a variable being assigned, read, referenced, or even 

initialized, and how many aliases a data structure has and what they are. UDB employs behavior 

related agents that will reduce the manual inspection that could be done using traditional breakpoints 

and watchpoints. See Table 10.2 for a list of UDB’s atomic behavior related agents.  

 This set of extension agents is intended to facilitate users’ ability to validate and check specific 

execution behaviors. They provide advanced on demand specific behavior tracing techniques. Some 

of those agents are focused on the call/return behavior of procedures; which either counts the number 

of times a procedure has been called or what value is returned. Other agents are focused on the 

read/write and aliasing of variable behaviors.  

For example, code in the program must be executed under some circumstances; otherwise it is 

dead code. However, sometimes a loop may execute zero times because the loop condition is not 

valid. If such a loop fails constantly, it may indicate a bug. Unfortunately, using classical debugging 

techniques, it is difficult to observe loops that exhibit this suspicious behavior. The agent 

Table 10.1. Atomic Data Related Agents 

Agent Name Return Type Description 

initial(x) Any The initial value of x 

final(x) Any The final value of x 

old(x) Any The previous value of x 

current(x) Any The current value of x 

new(x) Any The next value of x 

max(x) Numeric / String The maximum of all x values 

min(x) Numeric / String The minimum of all x values 

newmax(x) True/False Evaluate True if x has new max, False otherwise 

newmin(x) True/False Evaluate True if x has new min, False otherwise 

sum(x) Numeric The sum of all x values 

avg(x) Numeric The average of all x values 
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iteration(while) finds the actual number of iterations for the last while loop. This agent checks loops 

iteration by monitoring both the E_Syntax and E_Efail event codes, which report the current syntax 

and failed expression respectively. 

Another example targets uninitialized and dead variables, which are variables read and never 

assigned or assigned and never read during a particular execution. In mainstream languages, detecting 

uninitialized and dead variables can be achieved using static analysis techniques. However, the 

dead(x) agent detects variables that are theoretically live according to static analysis and the user’s 

expectations, but observed to be dead in a particular program run. Even if such variables do not 

introduce a bug, they are still a bad programming practice; it helps to warn the user about them. This 

agent tracks referenced variables based on their scope. For example, local variables are monitored 

over different calls before they can be considered frequently uninitialized or dead. The primary 

monitored event code is E_Deref, which is reported when a variable is read. 

 

 

 

 

 

Table 10.2. Execution Behavior Related Agents 

Agent Name Returns Description 

call(proc) Integer The number of times proc is been called 

return(proc) Variable The current value returned by proc 

initialized(x) True/False True if x was assigned at first reference, False otherwise   

dead(x) True/False True if x is never referenced at least once, False otherwise   

reference(x) Integer The number of times x is been read + written 

assign(x) Integer The number of times x is been assigned 

read(x) Integer The number of times x is been read only 

alias(x) List All current x aliases 

iterations(loop) Integer The number of actual iterations of loop 
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Chapter 11  

DTA: Dynamic Temporal Assertions 

This chapter introduces the idea of Dynamic Temporal (DT) assertions into the conventional 

source-level debugging session. It extends UDB with on the fly DT assertions that are separate from 

the program source code. Each assertion is capable of: 

1. Validating a sequence of execution states, named temporal interval 

2. Referencing out-of-scope variables, which may not be live in the execution state at evaluation 

time 

3. Employing a growing set of user defined atomic agents (internal extension agents).  

These new assertions are not bounded by the limitations of ordinary in-code assertions such as 

locality, temporality, and static hardwiring into the source code. Furthermore, they advance typical 

interactive debugging sessions and their conditional breakpoints and watchpoints. UDB’s DT 

assertions serve three purposes: 

1. Extend the usability of conventional source-level debuggers’ conditional breakpoints and 

watchpoints. This simplifies the ability to validate relationships that may extend over the 

entire execution and check information beyond the state of evaluation 

2. Reduce the number of times a user has to stop and single step the execution for state-based 

investigation 

3. Augment a traditional breakpoint-based debugging session with testing and verification 

capabilities. It introduces testing and verification features into traditional source-level 

debugging sessions [125]. For example, it allows users to verify loop invariants. 

11.1. Temporal Assertions 

Assertions are logical expressions that are inserted into the source code of a program. When 

execution reaches the asserted statement, it asserts that some property holds in the program’s current 

state. If the asserted expression does not hold, the assertion will abort and terminate the program’s 

execution. In contrast, Temporal Assertions are logical expressions that use Temporal Logic (TL) in 

order to validate, not one state, but a sequence of execution states, such as a sequence of variable 

values changed within a block of code [126]. 
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11.1.1. Temporal Logic 

Temporal logic is a special branch of modal logic. It emphasizes the notion of time and order 

[123, 124]. Linear-time Temporal Logic (LTL) is a special branch of temporal logic that extends 

propositional logic with a new set of operators such as:  

1. Next:  the property must hold in the next step 

2. Previous: the property must hold in the previous step 

3. Finally, Eventually, Sometime: the property will hold at some state in the future 

4. Globally, Always: the property must hold at every state on the execution path 

5. Until: the property has to hold until some other property holds 

6. Since: the property should hold since another property was held 

LTL is mostly used to measure program correctness. Metric Temporal Logic (MTL) extends 

LTL to support real-time and relative-time constraints [123, 124]. MTL has two models 1) a point-

based model that observes the target program at every instant in time, and 2) an interval-based model, 

that observes the target program over an interval of time. This chapter utilizes a combination of these 

two models within an interactive debugging session. The extended debugger provides Temporal 

Assertions that allow programmers to check real time execution properties over both temporal-state 

and temporal-interval and during interactive debugging sessions. 

11.1.2. Temporal Assertions vs. Ordinary Assertions 

Standard in-code assertions are inserted into the source code to validate pre- and post-conditions 

or to check the value of some variables and expressions. In general, typical assertions suffer from 

three limitations: locality, temporality, and lack of dynamicity within the source code of the buggy 

program. The following three sub-sections discuss these limitations in detail.  

11.1.2.1. Locality 

An ordinary assertion is bounded by its location (scope); it cannot reference a variable from 

another scope even if it is live based on the current execution state. Assertions live in one of the 

functions; each can reference local and global variables. If the scope is a method, it can reference any 

of the class variables. In fact, typical assertions cannot check or validate local variables in other 

functions or methods, even if that foreign local is static or still live somewhere on the stack of the 

current program’s execution state. 
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For the sake of simplicity, suppose that a variable in the calling function must be checked against 

another variable in the callee. A typical assertion cannot reference both of them at once. DT 

assertions provide a simple solution for such situations. See Figure 11.1 where a DT assertion can be 

virtually inserted into line 27. The assertion would refer to the local variable y in function bar() and 

compares its value against the variable x from function foo(). Furthermore, even though this assertion 

is inserted at line 27, it will evaluate the asserted expression (y >= foo:x) whenever the value of y is 

changed within bar(). That is because it is a Temporal Assertion, not a typical assertion, and its scope 

is procedure bar(). This particular assertion asserts that always the value of this expression (y >= 

foo:x) must hold (evaluate to true) for every evaluation, whether it is on the temporal-state or 

temporal-interval level. When this assertion is triggered for evaluation, by entering procedure bar(), 

the assertion agent has already obtained the last value of variables x of procedure foo(). Variable y is 

local to where the assertion is virtually located, so the assertion agent will inquire this value at 

evaluation time. Of course, this particular example can become more interesting than its current 

version when foo() is a recursive function and x is a parameter to bar(). 

11.1.2.2. Temporality 

An ordinary assertion is bounded by the current state of execution. It can check only the current 

value of the referenced variables. In Figure 11.2, line 75 of procedure baz(), both foo() and bar() are 

not on the stack any more. What if a user needs to check the value of variable x from procedure foo() 

against variable y from function bar()? Ordinary assertions are found to be useless once more.  

procedure foo( ) 

     local  a, b, c 

     x := 10 

     ………….. 

     bar() 

     ………….. 

end 

procedure bar( ) 

     local a, b, c 

     y := 20 

     …………... 

     y := ( y * a ) / b – c 

     // virtually assert always() { y >= foo:x } 

     …………… 

end 

 
Figure 11.1. A DT Assertion over Two Live Procedures 
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11.1.2.3. Source Code Location 

An ordinary assertion is bound to the source code, where it is written and compiled in the 

executable; any change or modification requires the ability to recompile and rebuild the executable. If 

the ordinary assertion evaluates to false, it may provide a warning statement or terminate the 

execution. If the user wants to investigate, he/she may modify the assertion by tightening or loosening 

the condition, or adding nearby assertions. In addition, the user may consider loading the buggy 

program under a source-level debugger, which allows single stepping and provides the ability to 

investigate the execution state. Thus, DT assertions work with the source-level debugger, where the 

user is interactive with the execution and able to insert, delete, and modify DT assertions on the fly 

without source or object code modification. 

11.1.3. Temporal Assertions vs. Conditional Breakpoints 

Conditional breakpoints and watchpoints are dynamically inserted during the debugging session. 

They can check execution properties and stop the execution whenever a condition is satisfied. Even 

though such breakpoints may have the advantage of being conditional and dynamic with on the fly 

insertion, deletion, and modification, they are still bounded to their locations; the exact line number in 

the source code of the target program and the state of the referenced variables and objects in that 

location.  

procedure foo( ) 

     static x := 0 

     x +:= 1 

     ………….. 

end 

procedure bar( ) 

     static y := 0 

      y +:= 1 

      …………... 

end 

procedure baz( ) 

     foo() 

     …………... 

     bar() 

     // virtually assert always() { bar:y >= foo:x } 

     …………... 

end 

 Figure 11.2. A DT Assertion over Two Sibling Functions 
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In general, most source-level debugging techniques rely heavily on the user’s ability to 

investigate when the program is stopped. For example, in reference to the instance provided in Figure 

11.1 of Section 11.1.2.1, tackling similar problems from inside a conventional source-level debugger 

will take one of two approaches. The first approach is to insert two different breakpoints, where the 

user has to investigate at each stop and memorize or write down the value of variable x from the first 

breakpoint in order to compare it against the value of y at the second breakpoint. The second 

approach takes advantage of function foo() being on the stack. The user may insert one breakpoint in 

function bar(), find the value of y, navigate the stack to find the value of x, and compare them. In 

contrast, a DT assertion is able to reference the out-of-scope variable x and compare it directly against 

the in-scope variable y and notify the user only when the assertion evaluates to false.  

Unlike breakpoints that stop the execution only when the condition evaluates to true, this DT 

assertion default action is to stop the execution when the condition is violated. The evaluation action 

hide is the default action for any temporal assertion that evaluates to true. However, the user can 

change this default action to pause, show, or stop, see Section 11.4.5. Furthermore, DT assertions 

are able to reference variables that are not accessible (not active in the current execution state) at 

evaluation time. This feature solves the problem provided in Figure 11.2 of Section 11.1.2.2, which 

shows that procedure foo() and bar() are siblings in baz(). 

11.2. UDB’s DT Assertions 

Figure 11.4 provides a simple UDB debugging session with an example of a DT assertion used 

to validate that a recursive function is going in the right direction. The debugged program is shown in 

Figure 11.3. The debugging session example shows a recursive implementation of the factorial 

calculation and illustrates how a DT assertion is used from within UDB’s console-based interface. 

The assertion is inserted using the assert command, which dynamically anchors the body of the 

assertion in the executable of the buggy program, at line 3 of Figure 11.3, with no executable or 

source code modification; more details about the notation are discussed in Section 11.7. 

During a debugging session, a user is always able to adjust and move assertions manually. 

However, if for any reason, the target program source code has to be changed and reloaded under the 

debugger, currently, the debugger has no means to maintain those ad-hoc assertions within their 

virtual source code related location. A future work is planned to maintain these assertions in a 

debugging session configuration file that will allow the user to reload the session. When the assertion 

is found to be misplaced, if the debugger failed to automatically adjust any of the affected assertions, 

the debugger may ask the user to manually relocate it. 
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$ udb factorial 

       UDB Version 2.0, December 1, 2009. 

       factorial: loaded 2.5K bytes of 32-bit uncompressed icode 

       1 Source file(s) found 

       Type "help" for assistance 

 

(udb) assert factorial.icn:3 alwaysp() { old(n) > current(n) } 

       Assertion 1#: assert factorial:3  alwaysp() { old(n) > current(n) } 

       is set successfully. 

 

(udb) run 5 

       running factorial …  

The factorial of  5 is 120 

       The factorial program exited normally. 

(udb) quit 

       Thank you for using UDB, Goodbye ! 

$ 

Figure 11.4. Sample UDB Session that Uses DT Assertions 
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# The factorial sample test program  

procedure fact(n) 

       if n <= 1 then 

          return 1 

       else  

          return n * fact(n-1) 

end 

procedure main(arg) 

       write(“The factorial of ”, &progname,“ is ”,fact(arg[1]) ) 

end 

 

$ udb factorial 

       UDB Version 1.5, January 2009. 

       factorial: loaded 2.5K bytes of 32-bit uncompressed icode 

       1 Source file(s) found 

       Type "help" for assistance 

(udb) assert factorial.icn:3 alwaysp(){ old(n) > current(n) } 

(udb) run 5 

       running factorial …  

The factorial of  5 is 120 

       The factorial program exited normally. 

(udb) quit 

       Thank you for using UDB, Goodbye ! 

$ 

Figure 11.3. Sample Factorial Program Written in Unicon 
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11.3. Debugging with DT Assertions 

DT assertions, within a typical source level debugger, provide an extension of conditional 

breakpoints and watchpoints. They employ agents that implement temporal logic operators, each with 

an automatic tracing mechanism. Traced data are assertion-driven; relevant information is gathered 

and analyzed in real time. Different DT assertions can be applied on different execution properties 

with dynamicity and flexibility. Each assertion is capable of validating program properties that may 

extend over a sequence of execution states. UDB’s DT assertions have the following features: 

1. Dynamic insertion, deletion, enabling, disabling, and modification. Assertions are managed on 

the fly during the debugging session without source or executable code alteration 

2. A non destructive way of programming supported by an assertion free source code. In 

general, debugging information is needed only during program development, testing, 

verification, validation, and debugging 

3. Assertions are virtually inserted and evaluated as part of the buggy program source code. All 

assertions live in the debugging session configuration; each is evaluated by the debugger in 

the debugger execution space. The debugger automatically maintains state-based techniques 

to determine what information is needed to evaluate each assertion, and it uses event-based 

techniques to determine when and where to trigger each assertion evaluation process. Some 

program state-based information is collected before assertion evaluation, while other 

information is obtained during the evaluation process; see Section 11.6.1 and 11.6.2. All DT 

assertions are evaluated as if they were part of the target program space 

4. Optional evaluation suite, where a user can specify an evaluation action such as stop, pause, 

show, and hide. Both pause and show actions enrich assertions with the sense of in-code 

tracing and debugging with print statements, where a user can ensure that the evaluation has 

reached some points and the referenced variables satisfy the condition, see Section 11.4.5. 

5. The ability to log the assertion’s evaluation result. This lets the user review the assertion 

evaluation history for a specific run. Evaluated assertions are marked with True or False. 

Some DT assertions may reference data in the future; those assertions are marked with Not 

Valid for that exact state-based evaluation. Assertions’ intervals are marked with a counter 

that tracks their order in the execution. If an assertion has never been reached, it is 

distinguished by its counter value, which is zero in this case; see Section 11.4.7. Log 

comparison of different runs is considered in future works. 
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6. Most importantly, DT assertions can go beyond the scope of the inserted location. Each 

assertion may refer to variables or objects that were living in the past during previous states, 

but not at evaluation point, and each assertion may compare previous variable values against 

current or future values. Each DT assertion implicitly employs various agents to traces 

referenced objects and retains their relevant state information in order to be used at evaluation 

time. 

11.3.1. Example #1: Loop Invariant 

Checking a loop invariant is one of the most difficult tasks during conventional interactive 

debugging. A programmer might end up with several breakpoints, watchpoints, and single stepping. 

However, utilizing UDB’s temporal assertions allows a programmer to check a specific loop invariant 

with one simple DT assertion. Figure 11.5 shows a selection sort algorithm that violates the loop 

invariant marked with #1, whereas #2 is where the invariant might get violated. A UDB user can 

check the invariant for this loop using the assert command provided in #3. This assertion can be 

inserted at any line within this procedure. It will notify the user at the very first incident that the 

asserted expression is violated.  

Figure 11.5. Using Temporal Assertions to Check Loop Invariant 

procedure selection_sort(A, n) 

 local i, j, min, swap 

 

    every i := 1 to n do 

    { 

          min := i 

          every j := i+1 to n do 

          if  A[j] < A[min]  then  

              min := j 

          #A[min] :=: A[i] 

          if  i ~= min then 

          {  

              swap      := i 

              i             := A[min] 

              A[min]    := A[swap] 

              A[swap] := i 

              i             := swap 

          } 

    } 

end 
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assert always() { i < n } #3 

#2 

#1 
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11.3.2. Example #2: Sequence of Variable States 

During a debugging session, sometimes, it is useful to check a variable value against its old 

value (last or previous value). Programmers might accomplish this using a typical technique such as 

breakpoints and single stepping. Figure 11.6 shows an iterative binary search algorithm. At the first 

look, the implementation of this algorithm gives the impression that it is perfect. It does what a 

typical binary search algorithm is supposed to do, checking for a mid value and dividing the searched 

list into two parts until the searched item is found or the searched sub-list has no more elements to be 

searched. However, in this particular implementation, marking the target sub-list might introduce an 

infinite loop as a result of integer division shown in line #10. UDB allows a user to insert a temporal 

assertion about any of these involved variables. This assertion may utilize the atomic agent named 

old, which traces the last value of the target variable. The temporal assertion checks the agent’s value 

against the current variable value during the entire execution of this procedure. It will break execution 

at the very first incident found to violate the asserted expression. 

Figure 11.6. Using Temporal Assertions to Validate Infinite Loops 

procedure binarySearch(A, n, item) 

   local found, first, mid, last 

 

   first := 1 

   last  := n 

   found := FALSE 

 

   while first <= last & found ~= TRUE do 

   {       

      mid := (first + last) / 2 

      if item < A[mid] then 

          last  := mid  

     else if item  > A[mid] then 

           first := mid  

     else 

   found := TRUE  

   } 

 

   if (found = TRUE)  then  

return mid 

   else                     

return -1 

end 
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assert always() { old(mid) != mid } #2 

#1 



131 

11.3.3. Example #3: Variables’ State from Different Scopes 

A debugging process may include checking variable values from different scopes, see Section 

11.1. Figure 11.7 shows a program that prints out the prime numbers from 1 to some x. Function 

main() calls isPrime(), which returns true when the passed argument is a primary number. The 

temporal assertion provided in #1 shows how to check the current local value of variable i against the 

last value of variable i of function main() (main:i). This assertion assumes that the value of parameter 

i should not change during the execution of isPrime(). However, because the programmer is 

modifying the value of i, this assertion will evaluate to false at every change (temporal-state) to i in 

this isPrime() function, and it will evaluate to false at every return (temporal-interval) from this 

isPrime() function. 

Figure 11.7. Using Temporal Assertions to Check Variables from Various Scopes  

procedure main() 

      local x, i 

   

      writes(“ Please enter a positive integer number : “) 

      x := read() 

       

      write(“\n The following are the primary numbers <= ”, x) 

      every i := 1 to x do  

       if  isPrime( i )  then 

                write( i , “ is a primary number “) 

end 

 

procedure isPrime( i ) 

       local k  

  

       k   :=  i 

       i   -:= 1 

 

       while ( i > 1 ) do  

       { 

            if   k % i  = 0  then 

                 fail 

            i -:= 1 

       } 

       return k 

end 
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assert always() { i == main:i } #1 
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11.4. Design 

Temporal assertions do not replace traditional breakpoints or watchpoints, instead they provide a 

technique to reduce their number, which means they are used to reduce the number of execution stops 

and improve the overall process of investigation. These temporal assertions advance breakpoints with 

agents of temporal logic operators, see Section 11.5. At a stop, besides the source-level debugging 

functionalities, the user can delete, enable, disable, and modify existing assertions, or even insert new 

assertions at any location in the buggy program source code; all without the need to recompile the 

target program source code or to reload it under the debugger. UDB supports three kinds of Dynamic 

Temporal Assertions (DTA):  

1. Past-Time Temporal Assertions 

2. Future-Time Temporal Assertions, and 

3. All-Time Temporal Assertions.  

Each of these three kinds has its own temporal interval, see Section 11.4.1. These DTAs can reference 

execution properties and other internal extension agents such as the atomic data and behavioral agents 

discussed in Section 10.4 of the previous Chapter.  

11.4.1. Temporal State 

Each reached assertion has at least one temporal interval. This interval consists of a sequence of 

temporal states. Temporal states are defined based on the referenced execution object, which may 

reference execution behaviors, data flow, and control flow. For example: 

1. Variables’ temporal states are defined based on their assignments and/or references 

2. Procedures’ temporal states are defined based on their behavior such as call and return 

3. Loops’ temporal states are defined based on their number of iterations 

4. Data structures’ temporal states are defined based on their activities. For instance, a stack’s 

temporal states are defined by its basic operations of pop() and push(), and a queue’s 

temporal states are defined by its basic operations of add() and remove(). 

11.4.2. Temporal Interval 

Temporal interval is defined by the assertion scope and kind. Assertion’s scope is defined based 

on the source code location provided in the assert command. This scope is the procedure or method 

surrounding the assertion location. Figure 11.8 shows the temporal interval for all three kinds of 
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temporal assertions in reference to the provided location. Together, the assertion’s scope and kind 

define the temporal interval. In particular: 

1. Temporal Intervals of Past-Time temporal assertions start at entering the assertion scope 

(calling the scope procedure) and end at reaching assertion’s source code location for the very 

first time after entering the scope. 

2. Temporal Intervals of Future-Time temporal assertions start at reaching assertion’s source 

code location for the very first time after entering the assertion scope and ends at exiting the 

assertion scope (returning from the scope procedure). In this kind of temporal assertions, the 

source code location can be hit more than once before the interval is closed. 

3. Temporal Intervals of All-Time temporal assertions start at entering assertion’s scope and 

ends at exiting that scope; regardless of the provides source code location. 

Figure 11.9 compares temporal intervals between all three kinds of temporal assertions and 

shows how these intervals relate to each assertion’s source code location. Part A shows an example of 

a Past-Time temporal assertion, which has different temporal intervals in each hit. Parts B and C 

shows the temporal intervals for this assertion when it is used as a Future-Time assertion and All-

Time assertion respectively. Each temporal interval consists of one or more temporal states; see 

Section 11.4.2. During a debugging session, it is possible for a user to have multiple assertions, each 

with multiple temporal intervals, and each interval with multiple temporal states. See Figures 11.9, 

11.10, and 11.11. 

Figure 11.8. Temporal Assertions: Scope & Interval 

…………. 

# prints odd numbers in [x .. 1] 

procedure printOddNumbers(x) 

      local i := 0 

 

      if x%2 = 0 then   x -:= 1 

      while (x ~= 0) do 

{ 

             write(" x = ", x) 

             x -:= 2 

             i +:= 1 

      } 

      return i 

end 

…………. 
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11.4.3. Assertion’s Evaluation 

UDB’s temporal assertions are evaluated in the debugger as if they were part of the buggy 

program source code. By default, whenever an assertion evaluates to false, the source-level debugger 

stops execution in a manner similar to a breakpoint. The debugger transfers control to the user with an 

evaluation summary. Furthermore, the assertion’s log gives the user the ability to review the 

evaluation behavior of each assertion. Each temporal assertion runs through three levels of 

evaluations:  

1. State-based temporal level (single state change) 

2. Interval-based (a sequence of consecutive states), and 

3. Overall execution-based (a sequence of consecutive intervals) 

Each assertion is evaluated based on 1) its temporal-state, which is triggered by any change to 

the assertion referenced objects, and 2) its temporal-interval, which is triggered by reaching the end of 

assertion’s temporal interval. See Figures 12.10 and 12.11. 

A. Past-Time Temporal Assertions 

Start 

Program 

End 

Program 

 [1..a]    [1..b]   …     [1..r]   …      [1..n] 

 

C. All-Time Temporal Assertions 

Start 

Program 

End 

Program 

 [1..a]    [1..b]    …    [1. .r]    …     [1..n] 

 

B. Future-Time Temporal Assertions 

Start 

Program 

End 

Program 

 [1..a]    [1..b]     …    [1..r]     …    [1..n] 

 

          : Temporal Interval          : Source Code Location   [  ]: Sequence of States 

Figure 11.9. Temporal Assertions Evaluation 
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Figure 11.11. Sample Evaluation of Various Temporal Assertions  
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Figure 11.10. Sample Temporal Assertion’s Evaluation 
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11.4.4. Temporal’ Cycles and Limits  

A temporal cycle is an integer that defines the maximum number of temporal intervals or 

maximum number of temporal level evaluation times. The default value of cycle is &null, which 

means to have unlimited evaluation. Temporal limit defines the maximum number of temporal states 

considered in each temporal interval. The definition of temporal limit is changed based on the kind of 

temporal assertion in reference. In particular: 

1. In Past-Time temporal assertions, limit defines the maximum number of consecutive states 

before reaching assertion’s source code location and after entering the assertion’s scope 

2. In Future-Time temporal assertions, limit defines the maximum number of consecutive states 

after assertion’s source code location is reached and before exiting the assertion’s scope 

3. In All-Time temporal assertions, limit defines the maximum number of states before and after 

assertion’s source code location is reached, all within the assertion’s scope. 

The Default limit is defined by whatever temporal states (temporal interval) are encountered during 

the execution of assertions’ scope and based in its temporal interval. The user can reduce the number 

of temporal states considered in each temporal interval by setting this limit using the limit command. 

11.4.5. Evaluation Suite 

UDB’s DT assertions are supported with an evaluation suite of actions, see Table 11.1. These 

actions add automation and tracing flavors. The default evaluation action is to hide the evaluation 

result as long as it is true and only stop the execution when the evaluation result is false. However, the 

user can change the default evaluation action that is performed when the assertion evaluates to true. 

He/she may choose to pause after each evaluation for N seconds, or just to show that the assertion is 

Table 11.1. UDB’s DT Assertions Evaluation Action Operators 

Evaluation 

Action 
Descriptions 

hide The evaluation will be hidden as long as it is True, otherwise it will break (default) 

pause  The evaluation will be paused as long as it is True, otherwise it will break 

show The evaluation will notify the user with a printed message as long as it is True, 

otherwise it will break 

stop The evaluation will be stopped every time it evaluates, whether it is True or False 
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evaluated without pausing by printing an appropriate message. By default, the pause period is 5 

seconds; however it can be changed by the user. During the pause, the user may hit a key that will 

change the pause to stop (breakpoint behavior). These evaluation suites provide two advantages: 

1. The user will know that the program has reached the assertion point and the assertion’s 

evaluation result is true; similar to the semantics of tracing with in-code print statements, and 

2. Without the need to stop and continue the execution manually, the execution will resume 

automatically, unless the user interrupts and stops the execution for more investigation. 

11.4.6. Temporal Assertions & Atomic Agents  

Atomic agents are a special kind of internal extension agents. They expand the usability of DT 

assertions and facilitate the ability to validate more specific data and behavioral relationships over 

different execution states. When an atomic agent is used within an assertion, it retains and processes 

data and observes behaviors in relevance to the used assertions. The assertion scope is what 

determines when the agent should start to work and what range of data it should be able to retain and 

process. For example, if the assertion uses the max(variable) or min(variable) agents, the agent 

always retains the maximum or minimum respectively over the assertion temporal interval.  

For more information, see Table 10.1 and Table 10.2 of Section 10.4 of the previous Chapter. 

Those atomic agents add more advancement and flexibility to the usefulness of DT assertions and 

their basic temporal logic operators. For example, DT assertions that reference atomic agents can 

easily check and compare data obtained by these atomic agents, which encapsulate simple data 

processing such as finding the minimum, maximum, sum, number of changes, or average. 

In particular, suppose that a static variable is changed based on a conditional statement where it 

is incremented when the condition is true and decremented when the condition fails. What if the user 

is interested in the point at which this variable reaches a new maximum or minimum? DT assertions 

provide a simple solution for such situations. The assertion number 1 of Figure 11.12 will pause the 

execution when variable x becomes greater than or equal to y. 

As another example, suppose the user is interested in the reasons behind an infinite recursion; 

perhaps a key parameter in a recursive function is not changing. DT assertions provide a mechanism 

to retain the parameter value from the last call and compare it with the value of the current call, see 

assertion number 2 of Figure 11.12. If old(x) == current(x), the assertion will stop the execution and 

hand control to the debugger where the user can perform further investigation. Of course, there are 
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other reasons that may cause infinite recursion, such as the key parameter value is changing in the 

opposite directions on successive calls. 

Moreover, DT assertions simplify the process of inserting assertions on program properties such 

as functions’ return values, and loops’ number of iterations. For example, a user may insert a 

breakpoint inside a function in order to investigate its return value, or place an in-code assertion on 

the value of the returned expression. A DT assertion provides a simpler mechanism; see assertion 

number 3 of Figure 11.12. Assertion number 4 of Figure 11.12 states that the while loop at line 50 in 

test.icn file always iterates less than 100 times. Finally, assertion number 5 of Figure 11.12 shows 

how to place a DT assertion on the number of calls to a function; the assertion will stop execution at 

call number 1000. This particular assertion is hard to accomplish using conventional source-level 

debugging features such as breakpoints and watchpoints. 

11.4.7. Evaluation Log 

An assertion log allows a user to review the evaluation history. The debugger maintains a hash 

table for each assertion. It maps assertion’s intervals into lists with information about their temporal 

state base evaluation. Each list reflects a temporal interval, which maintains the evaluation order and 

result for each temporal state. Each list reflects one temporal interval, which they are maintained 

based on their order too. Completely evaluated intervals are tagged with True or False. If the 

evaluation process is already started, but the final result is still incomplete, perhaps the end of the 

interval is not reached yet, these intervals are tagged with Pending until they are complete. This will 

convert Pending into True or False. See Table 11.2. However, some assertions may never be 

triggered for evaluation; this may occur because the execution never reached the assertion’s insertion 

point during a particular run. These assertions have the hit counter set to zero.  

(udb) assert test.icn:50 sometimep() { x < y } 
 
(udb) assert test.icn:50 alwaysp() { old(x) != current(x) } 
 

(udb) assert test.icn:50 alwaysf() { return(foo) > 0 } 
 

(udb) assert test.icn:50 always() { iteration(while) < 100 } 
 

(udb) assert test.icn:50 always() { call(baz) < 1000 } 

Figure 11.12. Sample of Different DT Assertions 
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11.5. Assertion Language 

DT assertions are applied using the assert command. Different assertions may utilize different 

Temporal Logic operators, each of which may utilize out scope objects and atomic agents. In order to 

evaluate the value of DT assertions within a typical source-level debugger, UDB has been extended 

with three kinds of internal agents performing various temporal logic operations. These agents work 

as temporal logic operators. The assertion language is comprised of a set of ten temporal logic 

operators. These agents are divided into three categories based on their temporal time and scope. 

Table 11.3 categorizes these temporal logic operators based on the three kinds of temporal assertions. 

The extended UDB enables programmers to add, delete, and modify ad-hoc DT assertions in the 

buggy program source code during debugging sessions. These assertions are capable of referencing 

variables beyond the scope of the assertion location and utilize information beyond the current state 

of execution. 

Table 11.4. DTA Temporal Logic Operators 

A. Past-Time Operators 
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B. Future-Time Operators 

alwaysp(cycle) { expr } alwaysf(cycle) { expr } 

sometimep(cycle) { expr } sometimef(cycle) { expr } 

since(cycle) { expr } until(cycle) { expr } 

previous(cycle) { expr } next(cycle) { expr } 

 

C. All-Time Operators 

always(cycle) { expr } 

sometime(cycle) {expr } 

 

Table 11.3. UDB’s DT Assertions Evaluation Log 

Evaluation 

Action 
Descriptions 

True The evaluation is finished and the result is True (state-based & interval-based) 

False The evaluation is finished and the result is False (state-based & interval-based) 

Pending  
The evaluation is triggered but the interval is not complete yet, future 

information is still possible. 
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11.5.1. Syntax 

The syntax of DT assertion language consists of ten temporal logic operators, see Table 11.3. 

Each Temporal Logic operator consists of an integer cycle parameter and a body. The body may 

reference program variables, and objects, combined with any of the data and behavioral extension 

agents described in Table 10.1 and Table 10.2 of Section 10.4. Variables and atomic agents can be 

combined with any of the relational and propositional logic operators. See Figure 11.13.  

DT assertions can reference execution properties such as variables, objects and their attributes, 

functions, methods, and control structures such as loops. If the referenced property is a variable from 

another function scope, it must be prefixed with the name of its function (i.e. foo:variable), whereas 

if that function is a method, the variable is prefixed with the method name prefixed with its class 

name (i.e. class::foo:variable). Of course, if that variable is a field of a record or an object, the dot 

operator is used (i.e. object.variable). Moreover, execution properties can be passed into any of the 

data and behavioral extension macros provided in Table 10.1 and Table 10.2 of Section 10.4. 

Figure 11.13. UDB’s Temporal Assertions Syntax 

(udb) assert location temporal-agent [ (cycle, limit) ] { expression } : true_behavior 

location      ::=   file-name:line-number | procedure-name 

temporal-agent  ::=   all-time-agent |  past-time-agent  |  future-time-agent 

all-time-agent  ::=   always(cycle)    |  sometime(cycle) 

past-time-agent  ::=   since(cycle)       |  previous(cycle)   | alwaysp() | sometimep() 

future-time-agent    ::=   until(cycle)        |  next(cycle)          | alwaysf()  | sometimef() 

expression     ::=   agent operator agent 

agent    ::=   literal | variable  | atomic-agent 

variable   ::=   variable-name   | procedure :: variable-name 

operator   ::=   relational-operator | propositional-logic-operator 

relational  ::=   < | > | <= | >= | = | != 

propositional-logic ::=   &&(and) |  ||(or) | ==> (implies) 

cycle   ::=   integer 

limit   ::=   integer 

file-name  ::=   string  

line-number  ::=   integer 

true-behavior   ::=   hide   | show  | pause | stop  
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11.5.2. Past-Time Operators 

This category consists of four Past-Time Temporal Logic Operators (agents); see Table 11.3, 

part A above. These operators utilize information retained between an entering assertion’s scope and 

a reaching assertion’s source code location. At insertion time, the debugger starts retaining relevant 

information to be used during the assertion’s evaluation. When the execution reaches the virtual 

execution point, where the assertion is hooked in the buggy program space, the assertion temporal 

interval is evaluated. If the evaluation is not able to complete due to some missing information—

maybe out-of-scope referenced data is never used during assertion’s lifetime, the assertion evaluation 

is tagged with Not Valid. This category consists of four temporal assertions:  

1. alwaysp() { expression } : asserts that expression must always hold (evaluate to true) for 

each, temporal state, temporal interval, and during the whole execution 

2. sometimep() { expression } : asserts that expression must hold at least once for each 

temporal interval, and during the whole execution. 

3. previous() { expression } : asserts that expression must hold right at the last state before the 

end of the temporal interval. 

4. since() { condition ==> expression } : asserts that expression must hold right after condition 

is true up until the end of the temporal interval and for each interval. 

11.5.3. Future-Time Operators 

This category consists of four Future-Time operators; see Table 11.3. Part B. These operators 

utilize information retained between a reaching of assertion’s source code location and a leaving of 

assertion’s scope. The agents of those operators start watching for referenced objects when the 

evaluation is triggered, where the debugger starts retaining relevant information until assertion’s 

temporal interval is evaluated completely. If the execution is terminated before assertion’s interval is 

complete, the user is able to check temporal states in that incomplete temporal interval. This category 

consists of four temporal assertions: 

1. alwaysf() { expression } : asserts that expression must always hold (evaluate to true) for 

each, state, temporal interval, and during the whole execution.  

2. sometimef() { expression } : asserts that expression must hold at least once for each 

temporal interval, and during the whole execution.  
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3. next() { expression } : asserts that expression must hold right at the very first state in the 

temporal interval  

4. until() { condition ==> expression } : asserts that expression must hold from the beginning 

of the temporal interval up until condition is true or the end of the temporal interval and for 

each interval. 

11.5.4. All-Time Operators 

This category consists of two All-Time operators; see Table 11.3, Part C. These two operators 

are based on the time interval between an entering assertion’s scope and an exiting assertion’s scope. 

When the assertion scope is entered, the assertion starts retaining relevant information and evaluates 

its temporal states. When the execution exits the assertion scope, the assertion temporal interval is 

evaluated. This category consists of four temporal assertions: 

1. always() { expression } : asserts that expression must always hold (evaluate to true) for each, 

state, temporal interval, and during the whole execution  

2. sometime() { expression } : asserts that expression must hold at least once for each temporal 

interval, and during the whole execution 

11.6. Implementation 

DT assertions are virtually inserted into the buggy program source code on the fly during the 

source-level debugging session. UDB’s static information is used to assist the user and check the 

syntax and the semantic of the inserted assertion. Each assertion is associated with two sets of 

information 1) event-based and 2) state-based. The debugger automatically analyzes each assertion at 

insertion time in order to determine each set. It finds the kind of agents that are required to be 

encountered in the evaluation process. If any extension agent is used, the debugger establishes an 

instance of that agent and associates it with its relevant object.  

The host debugger maintains a hash table that maps each assertion source code location into its 

related object (agent). The string format file_name:line_number is used as a key to access the 

assertion object in the hash table. The assertion object is responsible for maintaining and evaluating 

its assertion. It contains information such as 1) the parsed assertion, 2) a list of all referenced 

variables 3) a list with all temporal intervals and their temporal states, and 4) the assertion event 

mask, a set of event codes to be monitored for each assertion; this event mask includes the events 

mask for any of the referenced agents. 



143 

Execution events are acquired and analyzed in real time. Some events are used to control the 

execution whereas others are used to obtain information in support of the state-based technique. For 

example, an assertion is anchored in the execution state based on the E_Line event code, which is 

associated with the actual line number (event value). Other events such as the E_Assign and 

E_Value are used to watch and trace an assertion’s referenced variables. 

Each assertion has its own event and value masks, which are constructed automatically based on 

the assertion. A union set of all enabled assertion event masks is unified with the debugging core 

event mask. The result is a set of events requested by the debugging core during the execution of the 

buggy program. This set is recalculated whenever an assertion is added, deleted, enabled, or disabled. 

On the fly, UDB’s debugging core starts asking the buggy program about this new set of events. A 

change on any assertion event mask alters the set of events forwarded by the debugging core to that 

assertion object. 

Temporal logic agents automatically obtain the buggy program state-based information to 

evaluate DT assertions. Each agent automatically watches assertion referenced variables and retains 

their information in the debugger space. Some of the information is obtained through the values 

associated with the reported event code while others are obtained using AlamoDE high-level 

primitives.  

UDB’s Temporal Assertions are designed as extensions that utilize the IDEA architecture. There 

is an abstract class named Assertion, it is inherited by all of the ten other temporal logic operators.  

See Figure 11.14 for the UDB’s class diagram for Temporal Assertions. 

11.7. Summary 

DT assertions bring an extended version of in-code assertion techniques, found in mainstream 

languages such as C/C++, Java, and C#, into a source-level debugging session. These temporal 

assertions help users test and validate different relationships across different states of the execution. 

Furthermore, assertion evaluation actions such as show and pause provide the sense of debugging 

and tracing using print statements from within the source-level debugging session. They give the user 

a chance to know that the execution has reached that point and the asserted expression evaluated to 

true; it also gives the user the ability to interrupt and stop the execution for more investigation. The 

ability to log the assertion evaluation result provides the user with the ability to review the evaluation 

process. A user can check a summary result of what went wrong and what was just fine. 
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Source-level debuggers provide the ability to conditionally stop the execution through different 

breakpoints and watchpoints. At each stop, a user will manually investigate the execution by 

navigating the call stack and variable values. Source-level debuggers require a user to come up with 

assumptions about the bug and let him/her manually investigate those assumptions through 

breakpoints, watchpoints, single stepping, and printing. In contrast, DT assertions require the user to 

come up with logical expressions that assert execution properties related to bug’s revealed behavior 

and the debugger will validate these assertions. Asserted expressions can reference execution 

properties from different execution states, scopes, and over various temporal intervals. Furthermore, 

unlike conditional breakpoints and watchpoints, which only evaluate the current state, DT assertions 

are capable of referencing variables that are not accessible at evaluation time (not active in the current 

execution state). 

DT assertions do not replace traditional breakpoints or watchpoints, but they offer a technique to 

reduce their number and improve the overall investigation process. DT assertions reduce the amount 

of manual investigation of the execution state such as the number of times a buggy program has to 

stop for investigation. 

Figure 11.14. UDB’s Temporal Assertions UML Diagram 
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Part V 

Evaluation and Results  
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Chapter 12  

Performance and Evaluation 

This chapter evaluates the primary contributions of this dissertation. First, before evaluating 

major extensions included in AlamoDE, it highlights Alamo’s features and their advantages for event 

based debugging tools. Then, it discusses a new set of extensions that are needed to facilitate some of 

the debugging features. This chapter measures the effects of these extensions on both debugging tools 

and the Unicon language. Second, this chapter evaluates IDEA’s features within UDB, including its 

internal and external agents. It highlights the simplicity of these extensions and their advantages and 

measures their performance. Finally, this chapter ends the evaluation discussion with a look at 

dynamic temporal assertions, which are introduced for the very first time in a typical source-level 

debugger for sequential programming.  

The evaluation discussion is focused on capabilities and performance, which are considered a 

major step toward practicality. Part of the performance evaluation includes measuring the affected 

execution time. Unless indicated otherwise, seven different programs were considered during these 

experiments. These programs are rsg, scramble, genqueen, ichartp, igrep, miu, and pargen. See 

Appendix B for more details about these programs.  

Moreover, unless indicated otherwise, the execution time is measured using the UNIX time 

command. It gives timing statistics about a specific program. The time is shown in three categories: 

1) real time, which represents the elapsed time between the start of the process and its termination, 

2) user time, which is the total number of CPU-seconds that the process spent in user mode, and 

3) system time, which is the total number of CPU-seconds that the process spent in kernel mode. 

Moreover, these experiments were performed on Unicon version 11.6 running on a 32-bit Intel 

machine. This machine runs Linux open SUSE 11.0. It has the 1.6 T2050 core 2 Duo CPU and a 2 

GB of RAM. 

12.1. AlamoDE 

AlamoDE inherits Alamo’s implicit virtual machine instrumentation, which requires no special 

compilation and no source code or bytecode modification. It also provides an underlying mechanism 

to forward an event into another debugging tool that is loaded into the same virtual machine. This 

allows various debugging tools to share execution events. AlamoDE is used to build the extensible 

source-level debugger called UDB presented in Chapter 9. UDB integrates new automatic detection 
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techniques that can be found in trace-based debuggers such as ODB [10,13]. One measurement of 

AlamoDE’s effectiveness is that UDB is a working prototype source-level debugger; it imitates most 

of GDB’s functionalities with less than 10K lines of source code, including its IDEA architecture. 

This contributes as a proof by example to the value of AlamoDE as a debugging framework.  

AlamoDE’s 121 kinds of events and their relevant values provide ample information about the 

execution of the monitored program. AlamoDE’s form of in-process debugging does not intrude into 

the execution of the target program space. At the same time, it has the advantage of providing direct 

access to the target program space through a set of high level primitives (built-in functions). If the 

monitor program requires information beyond the reported event code and value, it can employ these 

primitives. For example, variable values can be obtained using the variable() primitive, keyword 

values can be obtained using the keyword() primitive, and procedure values can be checked using the 

proc() primitive, see Chapters 5-7. This mixture of monitored events and direct access features allows 

complex communication patterns between the monitor program and the target program. For example, 

a monitor program may decide to further investigate the execution state of the target program based 

on a particular event code and value.  

Experiment 

Most monitored programs generate millions of execution events, which affect the scalability of 

the monitoring task in both time and space. Often, event-based monitors have to provide their own 

application level filtering mechanism. AlamoDE provides high level facilities to dynamically 

customize monitored events. For example, UDB’s monitored events are adapted on the fly to the 

current active debugging features including its extension agents. AlamoDE provides two levels of 

event filtering mechanisms, the event mask and value mask. These masks are applied on event codes 

and their values respectively. They are checked by the instrumentation before events are reported to 

the monitor program [106, 107, 108].  

 Table 12.1 shows three programs rsg, genqueen, and scramble. Each of these programs is 

monitored for three different modes. The monitored modes are 1) all kinds of events; no event mask 

or value mask is used, 2) one kind of events specified by the event mask, but without utilizing the 

value mask; the monitored event is E_Deref, and 3) one kind of events with a specific monitored 

event code and value; this utilizes both of the event mask and value mask, the monitored event is 

E_Deref and its value is one of the dereferenced variables. Table 12.1 shows the number of reported 

events form each program and its monitoring mode. It also provides the corresponding average 

running time, each monitoring mode is observed for five different runs and the average time of these 

five times is calculated. The time is measured using the UNIX time commands. Figure 12.1 shows 
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the execution time of these three programs and compares it against the unmonitored version 

(standalone mode). 

Table 12.1. AlamoDE No Mask vs. Event Mask vs. Value Mask  

Program Monitoring Mode 
Number 

of Events 
Real/S User/S Sys/S 

rsg 0 No Monitoring none 0.060 0.028 0.027 

rsg 1 all events — No Mask 744817 2.765 1.756 0.977 

rsg 2 E_Deref  —Event Mask 61611 0.385 0.211 0.126 

rsg 3 E_Deref  —Event Mask + Value Mask 75 0.137 0.097 0.023 

genqueen 0 No Monitoring none 0.295 0.130 0.026 

genqueen 1 all events —No Mask 5926941 22.072 13.287 8.611 

genqueen 2 E_Deref  —Event Mask 537410 2.425 1.600 0.751 

genqueen 3 E_Deref  —Event Mask + Value Mask 75546 0.876 0.718 0.136 

scramble 0 No Monitoring none 0.249 0.156 0.045 

scramble 1 all events —No Mask 2125740 7.762 4.914 2.809 

scramble 2 E_Deref  —Event Mask 182162 0.962 0.658 0.288 

scramble 3 E_Deref  —Event Mask + Value Mask 15288 0.422 0.348 0.063 

ichartp 0 No Monitoring none 0.691 0.653 0.029 

ichartp 1 all events — No Mask 31622681 58.934 11.519 47.277 

ichartp 2 E_Deref  —Event Mask 2108995 9.202 6.354 2.818 

ichartp 3 E_Deref  —Event Mask + Value Mask 110921 2.807 2.571 0.206 

igrep 0 No Monitoring none 0.108 0.070 0.015 

igrep 1 all events —No Mask 1790572 6.441 4.120 2.301 

igrep 2 E_Deref  —Event Mask 195307 0.902 0.570 0.306 

igrep 3 E_Deref  —Event Mask + Value Mask 1006 0.280 0.229 0.027 

miu 0 No Monitoring none 1.340 0.672 0.042 

miu 1 all events —No Mask 4550772 17.002 10.591 6.349 

miu 2 E_Deref  —Event Mask 212421 1.999 1.242 0.358 

miu 3 E_Deref  —Event Mask + Value Mask 24 1.549 0.874 0.065 

pargen 0 No Monitoring none 0.028 0.011 0.015 

pargen 1 all events —No Mask 27193 0.163 0.098 0.066 

pargen 2 E_Deref  —Event Mask 1351 0.044 0.020 0.018 

pargen 3 E_Deref  —Event Mask + Value Mask 16 0.033 0.012 0.018 
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Figure 12.1. Execution Time- Standalone vs. Monitored Mode 
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12.2. Alamo’s New Extensions 

This section provides an evaluation for some of the new extensions implemented as addition to 

the original Alamo framework for debugging support. It evaluates two of the most important 

additions that have their effects on the Unicon language and the debugging process. The evaluation 

targets the performance of trapped variable implementation and compares it to original Alamo’s 

variable reading mechanism. It also evaluates the syntax instrumentation and its impact on the size of 

both the compiled object program and the executable binary format. 

12.2.1. Trapped Variable Assignment 

Since both the monitor and target program share the same address space, the monitor program 

has almost direct access to the space of the target program. This access method is facilitated through 

high level primitives supported by Alamo and its AlamoDE support within Unicon’s virtual machine. 

The variable() function can be used by the monitor program to read and write target program’s 

variables—local and global names. When this variable() function is used to read a value, there is no 

overhead induced on the space by this trapped block, it only acquires a copy of the variable value 

being read. But, if this function is used to change the value of the target program’s variable, then for 

security reasons, instead of directly referencing this target variable, a block of trapped variable is 

implicitly allocated.  

This block points to the target variable and contains two more fields; one contains the title of the 

block to be distinguishable by the internal implementation of the virtual machine, and the other is an 

integer counter used to validate the number of context switches between the time at which the 

reference is obtained and the time at which the final value is written. This block is allocated with 

every assignment to the target program space. The size of this block depends on the target machine. 

For example, on an Intel 32-bit machine, the size of this block is 12 bytes, whereas it is doubled on an 

AMD 64-bit machine. After the assignment is complete, this block becomes garbage and is cleaned 

by the language garbage collector. 

12.2.2. Syntax Instrumentation 

Syntax instrumentation is implemented to provide syntax information to the monitor program 

upon its request. This syntax information is inquired through monitoring the E_Syntax event or 

through a direct access to the &syntax keyword. Direct access to a keyword allows the monitor 

program to request the currently executed syntax name at any point, whether the syntax event is being 

monitored or not. In contrast, monitoring the E_Syntax event entails that the virtual machine 
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instrumentation should include a new event that is reported to the monitor program at the start and 

finish of each major syntax construct. 

The implemented technique requires the ability to make the syntax information available to 

Unicon’s runtime system. This was achieved based on an already available line and column number 

table that is included in the executable bytecode. Each entry in this table is based on two special 

object code commands line and colm introduced by the translator icont and written into the compiled 

object code file (ucode). Then these two commands are assembled by the linker based on two pseudo 

virtual machine instructions Op_Line and Op_Colm respectively. The result is one sparse table that 

maps Interpreter Program Counters (IPCs) into relevant line and column numbers found in the actual 

compiled source code. See Section 6.3. 

Originally, this table was only used to provide source code information for runtime errors and 

tracing facility. The first part in syntax instrumentation is augmenting this table with additional syntax 

information. The layout of this table is not changed except for the 5 bits taken from the original 16 

bits column, reducing it to 11 bits.  However, since this table is sparse, it does not provide a one-to-

one map from each source code location to its relevant IPCs. These original entries were found unable 

to provide sufficient and precise syntax information. A set of new entries were added to mark 

monitored syntax constructs such as major control statements and loop structures. The 

implementation of this syntax instrumentation affects Unicon programs in four ways. 

1. The effect on the size of the object code as a result of the new synt object code command 

instruction used to mark the syntax code in the compiled object code.  

2. The effect on the linking time used to assemble various object files into one bytecode 

executable. The Unicon linker is extended with new pseudo virtual machine instruction named 

Op_Synt, which is used to read the synt command and insert the syntax code along with the 

already provided line and column number in to the table.  

3. The effect on the size of the executable as a result of new entries in the line/column number 

table since the original entries were error oriented and not intended to monitor syntax 

information, which required inserting new entries surrounding major syntax constructs. In 

addition to what is already in the table, few numbers of entries were added to mark entering 

and exiting major syntax constructs such as control statements.  

4. The effect on the execution time of the monitored program as a result of the new E_Syntax 

event that occurs whenever a major syntax constructs starts or finishes.  
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The first three problems are general ones. They affect all Unicon programs unless the virtual 

machine is built with the NoSrcSyntaxInfo defined in define.h. This macro disables syntax 

instrumentation support—i.e. #define NoSrcSyntaxInfo. The fourth point affects only the monitored 

programs, especially when they include the E_Syntax event in their event mask. 

The reporting frequency of this new E_Syntax event depends on the target program. However, 

it is been monitored along with the E_Line and E_Deref events that are reported for new lines and 

variable dereferencing respectively. These events were monitored in rsg, scramble, genqueen, 

ichartp, igrep, miu, and pargen. The ratio of these reported events is shown in Figure 12.2. 

In order to evaluate these effects, six different programs were measured, before and after the 

syntax instrumentations, based on three categories: 1) the size of the bytecode, 2) the size of the 

executable, and 3) the compiling and linking time. Table 12.2 shows the impact of syntax 

instrumentation on the compiled object code. It measures the size of six object files before and after 

the syntax instrumentation on an Intel 32-bit machine. Then, it shows the amount of increase in the 

object code size imposed on each one of these files in kilobytes. Table 12.3 shows the impact of this 

new syntax instrumentation on the binary executable. It measures the sizes of six different 

executables before and after the syntax instrumentation and finds the difference in kilobytes. In Table 

12.2, the first three object files are linked directly into the executable provided in Table 12.3 without 

any other user or library files being involved. The last three files are big programs; they were linked 

from several ucode files. Figures 12.3 and 12.4 shows the percentage of these increases and compares 

them to the original sizes. Table 12.4 shows the compiling/linking time before and after the syntax 

instrumentation, whereas Figure 12.5 shows the percentage increase in these times. 

 

Figure 12.2. E_Deref, E_Line, E_Syntax, & E_Pcall Events Ratio to all Other Events 
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Table 12.2. Syntax Instrumentation Effects on Object-Code (ucode) Formats 

File Name Size Before Syntax/KB Size After Syntax/KB Difference/KB 

rsg.u 30.28 35.77 5.49 

scramble.u 4.97 5.96 1.00 

genqueen.u 4.20 5.01 0.81 

unicon.u 89.23 103.79 14.56 

ivib.u 319.26 365.79 46.52 

ui.u 77.08 84.96 7.88 

 

Table 12.3. Syntax Instrumentation Effects on Executable (bytecode) Formats 

Program Name Size Before Syntax/KB Size After Syntax/KB Difference/KB 

rsg 17.03 17.23 0.20 

scramble 3.28 3.29 0.01 

genqueen 2.86 2.88 0.02 

unicon 678.90 684.44 5.54 

ivib 392.42 398.70 6.28 

ui 590.15 600.87 10.72 

 

 

Figure 12.3. The Percentage Increase in the Size of the Object Code File 

 

Figure 12.4. The Percentage Increase in the Size of the Executable Program 
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Table 12.4. Syntax Instrumentation Effects on Compiling/Linking Time 

 
Before Syntax  Instrumentation After Syntax  Instrumentation 

Program Name Real User Sys Real User Sys 

rsg 0.035 0.0272 0.0072 0.0378 0.0288 0.0088 

scramble 0.015 0.0088 0.0048 0.0156 0.0096 0.0056 

genqueen 0.0148 0.0048 0.0072 0.015 0.008 0.0076 

unicon 0.198 0.176 0.0176 0.2224 0.1912 0.024 

ivib 3.3344 3.2368 0.072 3.5148 3.4096 0.076 

ui 3.8236 3.6384 0.16 3.905 3.6776 0.1784 

 

 

 

 

Figure 12.5. The Percentage Increase in Compile/Link Times 
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12.3. IDEA’s Evaluation 

The ability to easily extend a debugging tool is very important, because there is no debugging 

tool good enough to debug all kinds of bugs. Extensibility simplifies the task of improving these tools 

with new techniques. An IDEA-based debugger allows different debugging tools (extension agents) 

to simultaneously debug a program during the same debugging session (same run). IDEA’s core is a 

mediator that coordinates various extension agents. However, one of the biggest considerations in this 

type of design is performance. In IDEA, a considerable amount of time is spent on: 

1. Processing the instrumentation in the target program 

2. Performing context switches between the target program and IDEA’s debugging core  

3. Filtering the received events in the monitor program (the main debugging tool) 

4. Forwarding events from IDEA’s core to extension debugging agent(s).  

12.3.1. Procedure Call vs. Co-Expression Context Switch 

Although co-expression context switches are lightweight and managed in-process without the 

knowledge of the operating system, they are still costly; one of the reasons is their high occurrence 

rate. Migrate extension agents to internal or use them in a call-back mode will enhance the overall 

performance. In order to measure the gained processing speed for migrated agents, this dissertation 

starts with an experiment that measures the basic difference in time between procedure calls and co-

expression context switch.  

 

Figure 12.6. Time of Procedure Calls vs. Context Switches   
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Figure 12.6 compares the difference in time between local procedure calls, foreign procedure 

calls, and co-expression context switches. The comparison shows that procedure calls (both local and 

foreign) reduces the processing time by about one third. Data is collected from a very simple Unicon 

program provided in Figure 12.7. This program is used in 10 different runs, and the average time of 

these runs is used in Figure 12.6. The Unicon keyword &time is used to measure the elapsed CPU 

time in milliseconds.  

Figure 12.7. Sample Unicon Program Measures Procedure Calls vs. Co-Expression   

# A simple program test the basic difference in time between local procedure calls, 

# foreign procedure calls, and co-expression context switches.  

$define NUM 10000000 

procedure main(argv) 

local t1, t2, t3, ce, foreign_prog, foreign_proc 

 

t1 := &time 

    every i := 1 to NUM do   p() 

    write("The cost of local procedure calls : ", &time - t1,”ms.”) 

 

foreign_prog := load(argv[1]) 

foreign_proc := variable(“pp”, foreign_prog) 

t2 := &time 

    every i := 1 to NUM do   foreign_proc() 

    write("The cost of foreign procedure calls : ", &time – t2, “ms.”) 

 

 ce := create | 1 

    t2 := &time 

    every i := 1 to NUM do    @ce 

    write("The cost of context switches : ", &time – t3, “ms.”) 

end 

procedure p() 

  return 1 

end 
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12.3.2. Extension Agents  

Originally, external extension agents were used through context switches. For events that are 

forwarded to external debugging agents, two extra context switches are added to the debugging cost. 

There is a total of four context switches. The first two are between IDEA’s debugging core and the 

target program, and the second two are between the debugging core and the external agent. If more 

than one agent requests the same reported event code, then each one of those agents will add another 

two context switches.  

For instance, if there is a total of m agents loaded under the IDEA based source-level debugger, 

and n of these m agents request a specific event code; note that n <= m. The total number of context 

switches for this particular event is 2*n+2. This number is repeated each time this event is reported. 

During a debugging session (monitoring task), if this event is reported E number of times, then there 

is a total of Nc context switches during this session, see Equation 12.1.  

If Ec is the cost of each one of these context witches, where little c stands for the context switch, 

then the cost of reporting this event to these n agents is Cc, and the total cost of reporting this event 

during the session is TCc, both of which are shown in Equations 12.2 and 12.3 respectively. TCc 

depends on three variables E,  Ec and n. UDB and its IDEA architecture utilizes AlamoDE’s direct 

access and event filtering mechanisms to reduce these two factors to the least minimum possible 

based on the current state of AlamoDE. 

 

In contrast, when these n agents are used in the standalone mode (directly monitoring the target 

program—IDEA is not involved), the user must run them separately; one at a time. This eliminates 

the ability to compare their outcomes from within the same debugging session and precludes their 

potential for collaborations. However, the cost of reporting this event to an agent runs in the 

Cc = Ec * (2*n+2)  

 Equation 12.2. Cost of Forwarding an Event to n Agents using Context Switches 

Nc = E * (2*n + 2) 

Equation 12.1. Number of Context Switches (E Events Reported to n Agents) 

  TCc = E * Cc       TCc = E * (2Ec*n + 2Ec)     TCc = (E *2Ec *n) + (E *2Ec) 

 Equation 12.3. Total Cost of Forwarding E Events to n Agents using Context Switches 
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standalone mode is 2Ec. That is because reporting an event requires a total of two context switches. 

The total cost of reporting this event for each agent is C and the total cost of reporting this event to all 

n agents is TC, see Equations 12.4 and 12.5 respectively. 

 

Comparing TCc and TC from Equations 12.3 and 12.5 respectively, this comparison shows that 

TC is less than TCc and the difference is C. This means that running these n agents in the standalone 

mode saves a total of E*2Ec, which is the cost of reporting an event to one of these standalone agents. 

If you would consider UDB as an extra tool, not just a coordinator, then its cost is justified. However, 

even though utilizing these agents under a source-level debugger cost the performance a total of C, 

the user gains the advantage of synchronous execution and the ability for these agents to collaborate 

with each other during the same debugging session.  

The previous discussion was about these extension agents that are loaded on the fly during the 

debugging session and used through co-expression context switches. When an agent migrates to 

internal and is used through the inter-program procedure calls, the user gains extra performance. 

Section 12.3.1 shows that replacing context switches with local or foreign procedure calls lowers the 

overhead imposed by these context switches by approximately one third. In other words, the cost of 2 

context switches is equivalent to the cost of 3 procedure calls (local or foreign).  

This means, replacing context switches with procedure calls will reduce Ec to Ep, where little p 

stands for procedure calls. Ep ~= 2/3 Ec. This will change the formula presented in Equation 12.3. 

The new formula is presented in Equation 12.6. This equation retains the second part (2Ec*E) because 

there is one remaining context switch between the target program and UDB.  Figure 12.8 shows these 

notations in the three scenarios and compares them. Part A shows the use of these agents in the 

standalone mode, whereas parts B and C compare these agents when they are used in context switches 

vs. procedure calls. 

C = E * 2Ec  

 

 

Equation 12.4. Cost of Reporting an Event to an Agent in Standalone Mode 

Cp = (2Ep*n + 2Ec)*E       Cp = E * 2(Ep*n + Ec)        Cp = E * 2 (2/3Ec*n + Ec)       

Equation 12.6. The Cost of Reporting an Event to n Agents Using Procedure Calls 

TC = (E * 2Ec) * n 

 

 

Equation 12.5. Total Cost of Reporting an Event to n Agents in Standalone Mode  
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12.3.3. Experiment 

Earlier in Section 12.3.2, the Equations 12.3, 12.5, and 12.6 theoretically compared the use of 

extension agents through context switches, in the standalone mode, and through procedure calls 

respectively. Now, in order to find in practice the amount of slowdown imposed by a debugging agent 

that is running as a separate tool, or as an extension agent under IDEA, a simple agent is used to 

monitor a very frequent event, E_Deref. This event occurs whenever a variable is dereferenced inside 

the target program. The agent is kept simple; its computation is limited to counting the total number 

of monitored events, see Figure 12.9. This allows us to measure the event forwarding technique 

without worrying about the algorithm implemented within the agent itself. 

In order to find the effect of this agent on the debugging process, six different experiments were 

performed. In each experiment the same three target programs are used; each program is monitored 

for five different runs and the average time of these five runs is measured. The first program is rsg. 

The second program is scramble. The third program is genqueen. Table 12.5 shows the measuring 

time of these six experiments. The time is measured using the UNIX command time, which produces 

the real, user, and sys times. These times are presented in seconds. These six experiments were 

performed on the same machine used in Section 12.3.1.  

The first experiment is used to find the running time of these three programs when they are used 

without any monitoring; see Table 12.5 row #1. The second experiment is used to find the impact of 

UDB on these three programs. Each of these programs was loaded and run under UDB; the session 

neither enables any of the extension agents nor does it apply any of the classical debugging 

commands, see Table 12.5 row #2. The third experiment is to find how much time the simple 

standalone agent slows down the execution of these programs. The experiment runs the agent in the 

standalone mode, which loads, runs, and monitors these three programs, see Table 12.5 row #3. 

The fourth experiment is to find how much time the same agent takes if it is used in the method 

call approach under IDEA. The same three programs were used as target programs under UDB, see 

Table 12.5 row #4. The fifth experiment is to find how much time the same agent takes if it is used as 

external agent under UDB through the inter-program procedure call. The same three programs were 

used as target programs under UDB, see Table 12.5 row #5. 
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Figure 12.9. Sample Agent Counter   

$include "evdefs.icn" 
$ifndef StandAlone 
class EventCounter : Listener( 
$else 
class EventCounter(  
   eventMask, # an event mask 
$endif 
    count       # count the number of events  
    ) 
method handle_E_Deref() 
   count +:= 1 
end 
method handle_E_Exit() 
   write("Total # of events is : ", count) 
end 
initially(name, state) 
$ifndef StandAlone 
    self.Listener.initially(name, state) 
$endif 
    count := 0 
    eventMask  := cset (E_Deref || E_Exit) 
end 
 
# StandAlone is defined when this tool is used as a standalone monitor. 
# otherwise, this tool can be statically linked into the main udb source code  
$ifdef StandAlone 
link evinit 
 
# This main() procedure is only used in the standalone mode 
# or udb's external co-expression mode 
procedure main(tp) 
    local mask, obj 
    EvInit(tp) | stop(" cannot initilalize target program" || tp[1]) 
    obj  := EventCounter() 
 
    while EvGet(obj.eventMask) do 
 if    &eventcode == E_Deref then obj.handle_E_Deref() 
 else        obj.handle_E_Exit() 
    return 
    handle_Events() 
end 
 
# This procedure is only used by the  inter-program procedure calls 
procedure handle_Events(code, value) 
   static obj 
   initial{    obj := EventCounter() 
                  return obj.eventMask   }  
   &eventcode  := code 
   &eventvalue := value 
   if     &eventcode == E_Deref  then obj.handle_E_Deref() 
   else      obj.handle_E_Exit() 
end 
$endif 
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Finally, the sixth experiment is to find how much time the same agent takes if it is used in the 

external approach through the context switch event forwarding method. In each run, the method 

cmdLoad() is called once to load that agent. Then the method Forward() is called frequently in 

IDEA’s evaluator loop to forward events to this agent. This method’s underlying implementation 

checks whether the received event is in the event mask of every one of those loaded agents before 

utilizing the EvSend() primitive, which forwards this event to the agent. The same three programs 

are used as target programs under UDB, see Table 12.5 row #6. In this final experiment, in order to 

check the maximum overhead for this approach, the loading time of the external debugging tool is 

already included and added to the overhead imposed by updating the external agent with the received 

event. Figure 12.10 shows the average time for these six experiments in seconds. 

In Figure 12.11, the chart compares the total number of events that can be processed by an 

extension agent during one second. It compares IDEA’s three event forwarding mechanisms: 1) 

internal procedure calls used by internal extension agents, 2) external procedure calls used by external 

Table 12.5. Performance of IDEA’s Extension Agents  

Approach rsg scramble genqueen 

# Time Real/s User/s Sys/s Real/s User/s Sys/s Real/s User/s Sys/s 

1 No Monitoring 

Involved 
0.076 0.047 0.022 0.244 0.178 0.041 0.333 0.154 0.029 

2 Directly 

Under UDB 
0.108 0.078 0.026 0.253 0.203 0.042 0.328 0.166 0.044 

3 Directly Under 

the Agent 
0.421 0.295 0.119 1.153 0.860 0.282 2.939 2.197 0.708 

4 Internal 

Procedure Call 
1.064 0.878 0.134 2.735 2.412 0.305 7.710 6.781 0.782 

5 External 

Procedure Call 
1.106 0.896 0.131 2.860 2.504 0.327 8.027 7.000 0.852 

6 External 

Context Switch 
1.239 0.972 0.209 3.226 2.641 0.547 8.907 7.353 1.491 
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extension agents that utilize inter-program procedure calls, and 3) external co-expression used by 

external extension agents that utilize co-expression context switches. The chart in Figure 12.12 

extends the comparison to compare agents running under IDEA against the same agent used in the 

standalone mode.  

The standalone approach relatively proves its speed and efficiency, where it handles more than 

twice the number of events that are handled by the external agent under UDB. Using an external 

agent that is running under UDB provides a worse time performance than either the standalone 

approach or the internal (built-in) to UDB approach. However, this approach is still a valuable 

technique because of its flexibility and usability; especially for testing purposes. It allows users to 

write their own debugging and dynamic analysis tools and uses them on the fly from the inside of a 

typical source-level debugging session. 

 

Figure 12.10. The Average Time for the Experimental Agent in Seconds   
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12.4. UDB’s Evaluation 

One of the biggest considerations in the design of an event-based source-level debugger is the 

performance in terms of space and time. Most event-driven debuggers suffer from scalability problem 

 

Figure 12.11. IDEA's Extension Techniques 
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because they must handle a huge volume of trace data. In regard to the processing time of events, 

UDB spends a considerable amount of time processing the instrumentation provided by AlamoDE, on 

the context switches between UDB and the buggy program, and on the event filtering and processing 

inside UDB’s main debugging core (the evaluator). In this regard, the most frequent events are 

organized to be checked first. 

Experiment 

In order to find how much slowdown is imposed on a program running under UDB, the time is 

measured for a Unicon program running on a Linux machine without UDB, then the time is measured 

for the same program running on the same machine but under UDB; different runs were performed 

and in each run one of the debugging techniques was enabled, the measured time in Table 12.6 is the 

average of three different runs. The program is the Unicon translator itself, its size is 609KB and the 

virtual machine size is 790KB.  

Table 12.6 shows that UDB at present provides acceptable performance for ordinary debugging 

operations, with additional VM support needed for breakpoints and watchpoints. The AlamoDE 

architecture has been shown viable for debugging, but it will become more attractive with further 

tuning. More serious performance slowdowns are associated with various automatic debugging 

techniques, which may introduce complex dynamic analyses in order to function, see Figure 12.13. In 

Table 12.6. The Time of Different UDB Debugging Features   

# Feature Real/s User/s Sys/s 

1 Normal (No UDB) 1.17 0.99 0.12 

2 Under UDB 1.39 1.17 0.11 

3 Tracing Procedure Calls 2.19 1.77 0.28 

4 Tracing String Scanning Activities 2.38 1.98 0.27 

5 Tracing All Procedure Activities 3.37 2.79 0.49 

6 Breakpoint 3.68 3.45 0.14 

7 Tracing Built-in Function Calls 4.61 3.75 0.79 

8 Watchpoint 7.98 6.51 1.38 

9 Tracing Type Conversion  8.99 6.74 1.98 

10 Detect Variable Type Change 14.17 11.24 2.77 

11 Detect Subscript Fails 14.91 11.41 3.33 

12 Detect Zero Time Loops 15.01 12.17 2.66 
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practice programmers can enable/disable individual techniques between breakpoints or between steps 

in the debugger. Programmers only have to pay for expensive features when they need them, but 

further reducing the cost of the various automatic debugging features is a key to making them 

practical for the mainstream languages. 

12.5. DT Assertions Evaluation 

DT assertions provide the ability to validate relationships that may extend over the entire 

execution and check information beyond the current state of evaluation. DT assertions’ temporal logic 

operators are internal agents used within the IDEA architecture. Those agents can reference other 

atomic agents, which provide access to valuable execution data and behavior information. This 

collaboration between agents can provide a helpful debugging technique and prove the value of the 

IDEA architecture. However, the design and implementation of DT assertions encounters some 

challenges and limitations discussed in the following subsections. 

 

Figure 12.13. The Performance of UDB's Various Debugging Features 
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12.5.1. Evaluation 

In consideration of the performance in terms of time, the implementation of temporal assertions 

utilizes a conservative assertion-based event-driven tracing technique. It only monitors relevant 

events; the event mask and value mask are generated automatically for each assertion at insertion 

time. Temporal assertions are evaluated in three levels. First is the state based level, which depends 

on any change to the referenced execution property. Second is the interval based level, which is 

determined by the assertion scope and kind. Third is the overall evaluation level, which occurs once 

per each execution. Different assertions can reference different execution properties. For this reason 

various assertions will differ in their cost.  

However, in order to generally assess the role of the three evaluation levels in the complexity of 

these temporal assertions, let us assume that Es is the maximum cost of monitoring and evaluating a 

state change within a temporal assertion. Furthermore, let us assume that n is the maximum number 

of state changes during a temporal interval and m is the maximum number of temporal intervals 

during an execution, see Figure 12.14. This means, the maximum cost of evaluating a temporal 

interval for this assertion is Es*n and the maximum cost of an assertion during the whole execution is 

(Es*n)*m which is equal to Es*n*m.  Es includes the cost of event forwarding presented during 

evaluating the IDEA architecture in Section 12.3.2. This means that part of Es is (2Ep + 2Ec), where 

Ec is the cost of reporting an event to UDB and Ep is the cost of forwarding an event to the temporal 

logic agent (internal agent). This means the Es dominates both n and m; state change is the main 

performance issue in temporal assertions. 

Furthermore, retained information is limited and driven by assertions’ referenced execution 

properties. Assertions are virtually evaluated because they are in another execution space. The 

evaluation occurs in the debugger space with data collected and obtained from the buggy program 

space. The assertion log gives the user the ability to review the evaluation behavior of each assertion. 

Temporal assertions use in-memory tracing. A table is allocated for all assertions; it maps each 

assertion source code location to the instance object of the actual assertion. Another table is allocated 

for each assertion; it tracks temporal intervals, each of which is a list (stack) with each of the state 

based evaluation result. A third table is used to map assertion temporal intervals with their evaluation 

result, each of which is one value True, False, or Not Valid. Then one variable is holding the up to 

the point result which is either true or false. The dominating part in the used space is the number of 

state changes, Es. Each state base evaluation is tracked with a record that keeps information about the 

line number, file name, and the result. 
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Experiment 

In order to find the impact of temporal assertions on the execution of the target program and the 

debugging time, a simple temporal assertion is applied on a simple program. The program prints 

numbers between 1 and 100,000; see Figure12.15. The temporal assertion is applied with various 

sizes of temporal intervals. These intervals start at size 1, 100, 1000, 10,000, 50,000 and 100,000. 

Table 12.7 shows eight kinds of runs, each is observed for five times and the average time of these 

times measured. These kinds of runs range from measuring the time for the program in the standalone 

mode (no monitoring is involved), monitored under UDB with no assertion applied, then with an 

assertion that has various intervals. Figure 12.16 shows the impact of these temporal assertions of the 

execution time. 

Figure 12.14. State Based vs. Interval Based Evaluation   

H 1  [ S11 S12 …. S1a   ] [1..a] 

H 2  [ S21 S22 …. S2b   ] [1..b] 

H j  [ Sj1 Sj2 …. Sjr     ] [1..r] 

H m  [ St1 St2 …. Smf    ] [1..f] 

State Based 

Evaluation 

Interval Based 

Evaluation 

Max # of 

Intervals is m  

Max # of 

States is n 

Figure 12.15. Sample Unicon Program Used to Measure Time of Temporal Assertions 

# A program that prints the numbers from 1..100000 

procedure main(argv) 

  local n := 100000 

every i := 1 to n do write(i) 

end 

1 

2 
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4 
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7 
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Table 12.7. Evaluation Time of Temporal Assertions 

# Feature Real/s User/s Sys/s 

1 standalone 2.1 0.1 0.2 

2 under UDB 2.2 0.2 0.2 

3 sometime { i < n } 2.2 0.2 0.2 

4 always (limit=100) {  i < n } 2.7 0.2 0.2 

5 always (limit=1000) {  i < n } 2.7 0.3 0.2 

6 always (limit=10000) {  i < n } 3.9 1.5 0.2 

7 always (limit=50000) {  i < n } 8.1 6.2 0.5 

8 always (limit=100000) {  i < n } 13.6 12.4 0.9 

 

 

Figure 12.16. Temporal Assertions Evaluation Time 
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12.5.2. Challenges 

Debugging with DT assertions provides advantages over typical assertions and conditional 

breakpoints and watchpoints. At the same time, it faces many challenges, some of which are based on 

associating assertions with the executable’s source code, evaluating assertions in the debugger, and 

the source-level debugger’s ability to obtain and retain relevant event-based and state-based 

information with reasonable performance. 

First, if an assertion makes a reference to a variable, which is not accessible from within the 

assertion’s scope, the debugger should automatically trace those variables and retain their relevant 

state information to be used at the assertion evaluation time. This allows a DT assertion to access data 

that is not live at the assertion’s evaluation time. 

Second, what if the assertion source code location is overlapping with a statement? Which one 

should be evaluated first, the assertion or the statement? A conservative approach may consider the 

assertion evaluation after the statement only if the statement has no variables referenced by the 

assertion, or if the statement does not assign to any of the assertion referenced variables. However, if 

the statement will assign to any of the assertion referenced variable, the assertion can be evaluated 

before and after the statement evaluation. If the two evaluations are different such as one is true and 

the other is false, or both are false, the assertion will stop the execution and hand the control to the 

debugger and the user to investigate. This dissertation, takes the simplest approach which is to 

evaluate the assertion before the statement. Furthermore, if an assertion is not overlapping with an 

executable statement, the AlamoDE framework cannot report a line number event from a non 

executable line. A line number event is only reported when a statement in that line number is fetched 

to be executed. This is reached by checking the assertion source code location before confirming that 

the assertion is inserted successfully. It checks whether the line number is empty or it is commented 

out. 

Finally, if a referenced variable is an object or a data structure such as a list, this can cause two 

problems.  First, the object is subject to changes under other names because of aliasing. Second, if the 

object is local, it may get disposed by the garbage collector before the evaluation time. The 

implementation could be extended to implement trapped variables that would allow us to watch an 

element of a structure or utilize an aliasing tracing mechanism to retain all changes that may occur 

under different names. The implementation of temporal assertions presented in this dissertation does 

not go after heap variables. 
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Chapter 13  

Conclusion and Future Work 

13.1. Conclusion 

This dissertation presented three primary results. The first contribution is AlamoDE, which 

facilitates the ability to build various custom-defined debugging, dynamic analysis, and visualization 

tools. These tools can be written and tested as standalone programs, which utilize execution event 

patterns to detect suspicious execution behaviors and potential bugs. AlamoDE provides high level 

control over the execution of the buggy program with efficient instrumentation and no intrusion on 

the buggy program space. AlamoDE is integrated in the Unicon language with very low cost (other 

than code size) in the production virtual machine. This integration allows the debugging tool to run on 

the virtual machine synchronously along with the buggy program. The debugger and the buggy 

program run in two different co-expressions and the buggy program is the only one affected by the 

instrumentation. AlamoDE’s support for dynamic event customization provides the ability to change 

the set of requested events on the fly by adding/removing events’ codes to/from the event mask. 

Event filtering based on events’ values substantially reduces the amount of reported events and the 

number of context switches. This dissertation proved that:   

1. AlamoDE is sufficient to support various event-based debugging tools and techniques, 

including typical source-level debugging functionalities, with sufficient performance for 

production use 

2. A high level event-based framework reduces the development cost of debugging tools and 

simplifies their extensions 

3. AmaloDE’s in-process debugging support allows for more efficient and complex 

communication patterns between the debugging too and its target program. 

The second contribution is IDEA extension architecture, which facilitates a source-level 

debugger with an extension mechanism. It provides the ease to simultaneously run those custom-

designed tools (or agents) in conjunction with the typical source-level debugging session. The 

combination of AlamoDE and IDEA simplify the experimenting process with new custom-defined 

debugging tools and techniques, which may include: 
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1. Improvement to traditional techniques such as watchpoints and tracepoints 

2. The ability to integrate verification and validation techniques such as dynamic temporal 

assertions 

3. The simplicity to develop, test, and integrate new automated and dynamic analysis techniques 

of debugging agents 

The final contribution of this dissertation is UDB, which is an event-driven source-level 

debugger that utilizes the IDEA architecture in its debugging core. See Figure 13.1. Under UDB, a 

user can easily load standalone debugging tools as external agents or incorporate them as internals 

within the source code of the debugger, all with no source code modification. It allows programmers 

to run a chosen suite of dynamic analysis agents (internals and externals) on the fly from within its 

typical console-based interactive debugging session. Furthermore, this event-driven agent-oriented 

implementation provides many advantages over traditional source-level debuggers, such as 

simplifying the process of extending the debugger with new debugging features. UDB’s 

implementation and ease of extensibility demonstrate the value of AlamoDE and IDEA, and prove 

that: 

1. A source-level debugger built on top of a high level event-driven debugging framework can 

surpass ordinary debuggers with more debugging capabilities, and it is easier to extend and 

maintain than a conventional debugger. For example, UDB is imitating GDB’s functionalities 

with less than 10K lines of source code  

2. It simplifies applying common source-level debugging functionalities such as breakpoints, 

watchpoints, stepping and continuing. 

3. It facilitates complex debugging techniques in a simpler design that breaks the debugging 

process into small task-oriented agents. These agents allow for more debugging features with 

dynamic analysis and automatic debugging techniques 

4. It provides the ability to employ agents, in the source-level debugging session, only when they 

are needed. The debugger can easily provide simple commands to load, unload, enable, and 

disable any number of external extension agents on the fly during a source-level debugging 

session 

5. It enables custom-defined debugging tools to be used as external agents or registered as 

internal permanent debugging features. This encourages users to write their own high level 

standalone debugging agents.  
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Figure 13.1. Dissertation Contributions 
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13.2. Discussion  

Many debugging techniques such as algorithmic debugging, event grammars, and delta 

debugging provide automation for specific kinds of bug hunts. Trace-based debuggers such as the 

ODB [47, 48], TOD[49, 50], and the WhyLine [24, 25] debuggers provide advanced debugging 

techniques by recording the whole program’s history of execution in order to provide an answer for a 

question that can be asked. In particular, ODB sacrifices most of the standard debugging techniques 

such as breakpoints, watchpoints, stepping and continuing. It only provides a navigation tool for 

execution history. When it comes to changing the state of the running program during the debugging 

session, ODB forces the user to trace the complete program first, before the user is able to trace-back 

and re-start the execution from some middle point with new value assigned to a variable. These trace-

based debugging approaches encounter some limitations. For instance, the WhyLine debugger is 

limited for programs that run for a couple of minutes whereas TOD builds a distributed database that 

stores and indexes every state change during the execution. 

In contrast, UDB preserves the debugging techniques found in classical debuggers such as GDB, 

but it integrates new automatic detection techniques that could be found in trace-based debuggers. 

These techniques provide the user with answers about the execution in terms of specific behavior. 

Instead of recording the complete program state and letting the user investigate or ask questions, 

UDB’s approach is to employ agents that monitor the execution of the program and watch for some 

specific behaviors that may cause a bug. This has the advantage of better scalability and providing 

answers on the fly. 

UDB’s agents overcome several of the limitations of standard source-level debuggers. For 

example, typical source-level debuggers heavily rely on the user’s ability to investigate the execution 

state. If a bug does not crash the program’s execution, then a user has to step inside the execution 

state with anticipated breakpoints and watchpoints. Often, users start with breakpoints that are far 

before or after the bug’s root cause. They end up re-running and single stepping through the program 

repeatedly; each with different breakpoints and watched variables. In contrast, UDB has the potential 

to bring more debugging techniques into the source-level debugging session. Instead of recording the 

complete program state and letting the user investigate, UDB’s agents monitor the execution of the 

program and watch for specific behaviors that may indicate a bug or a suspicious activity. This has 

the advantage of better scalability and providing answers on the fly. Often, these agents add 

indispensable value into the debugging process with moderate impact on the performance of the 

buggy program. UDB’s agents provide capabilities that can be found in trace-based debuggers with 

the advantage of being small and task-oriented for better scalability. 
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In general, the slowdown imposed by automatic and dynamic analysis techniques depends on the 

algorithms used and their implementations within the debugging tool or agent. Compared with the 

slowdown of many automatic debugging tools, the performance of UDB is reasonable. For example, a 

suite of debugging agents imposes at most 20 times slowdown on the execution of the buggy program 

over an uninstrumented execution mode. However, the true test of UDB’s performance will be 

whether it enables debugging agents that justify their time cost by the value they provide to 

programmers. To place this in perspective, a debugger such as valgrind imposes a 20 to 50 times 

slowdown, and it does not provide the interactive debugging environment that UDB provides, where 

the user can be selective about which agents to enable or disable from within a breakpoint based 

debugging session. This combination of valgrind-style dynamic analysis within an interactive 

debugger provides more effective debugging. 

13.3. Limitations 

AlamoDE still has some limitations. First, AlamoDE’s instrumentation has no cheap means of 

filtering an event based on source file name; in particular there is no E_File event. For instance, when 

the source-level debugger has a breakpoint on specific line, it will receive the E_Line event whenever 

that event code and value are satisfied regardless of which source file the execution encountered that 

event in. This limitation is inherent in the instrumentation. Like most other binary executables, 

Unicon’s binary format has little information about the source code, which must be checked 

separately from the binary. In particular, the line number event E_Line is reported or checked for 

lines that are about to be executed. However, if the user placed a breakpoint on an empty line, then 

this event will never get reported by the interpreter of the target program. So, in the implementation 

of a source-level debugger, the debugger itself checks the current version of source code to validate 

whether that line is an empty line or not. This mechanism works as long as the executable binary is 

built from this current version of the source code. However, if the source code is ever modified 

without rebuilding the executable binary, this may cause confusion for the user.  

In general, UDB agents may utilize execution information before the current execution state. 

This has the advantage that an agent can be built to memorize and analyze what a user might do when 

debugging with a typical source level debugger. However, those external extension agents that are 

loaded during the debugging session can only analyze information after their loading/activation time. 

In general, agents will not be able to record or detect execution properties that were executed when 

the agent is not present or is disabled. This feature can have one advantage only if the user 

intentionally wants the agent to detect and analyze a portion of the execution, in this case the user can 
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manually enable and disable agents between different points; in particular, when the target program is 

stopped because of a breakpoint, watchpoint, or single stepping.  

For DT assertions that may be inserted in the middle of the debugging session and contain 

references to variables that may have been processed before the insertion time, the debugger will not 

be able to evaluate such assertions until those variables are executed sometime while the assertion is 

live. Three options were available. First, lazy evaluation: if any of the assertion’s referenced variables 

is live while the assertion is live, the debugger will put this assertion on the waiting list until all of its 

relevant data is available. Second, totally ignore the assertion evaluation at that point; hoping that in 

future hits the data will be available. Finally, stop the execution and provide reasoning about the 

unsuccessful evaluation. This dissertation took the simplest approach, which is to mark this hit with 

Not Valid and not consider it in the overall evaluation process.  Furthermore, the debugger is able to 

retain assertion relevant information as long as the assertion is enabled. The debugger will not be able 

to evaluate data that was processed when the assertion was disabled. However, this may have some 

advantages in some cases where the user is interested in ignoring a portion of the data between two 

points of execution. 

13.4. Future Work 

Previous event-based source-level debuggers, such as Dalek [42] encountered performance 

obstacles. AlamoDE provides usable debugging support proved in the implementation of UDB and its 

IDEA extension architecture. However, relatively compared with an uninstrumented execution mode, 

IDEA has room for significant improvement in its performance for extension agents. This slowdown 

in the processing speed is based on the compulsory overhead associated with the current event’s 

reporting and forwarding mechanism, which is formulated as context switches between the external 

agents and the debugging core. Performance can be further improved by buffering related events and 

avoiding extra context switches.  

Another potential improvement is to offload the cost of external agents onto additional processor 

cores. This requires extending Unicon with real concurrency, where different co-expressions can be 

off loaded onto different processors. Furthermore, the value mask is used as a second filtering 

mechanism to reduce the number of reported events and further improve the monitoring performance. 

However, IDEA’s debugging core only knows about the event mask of the external agents. Adding 

support for external agents’ value masks would help improve the performance whenever that value 

mask is in use by the agent. Another debugging context where further work is needed is to debug a 

long running real time system that is interactive with the user and maybe with other users over the 
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network. The debugger needs to be plugged into the running program without interfering with its 

event-driven execution. 

Further future work might aim at reducing the number of context switches by adopting a new 

communication paradigm. At present IDEA’s debugging core plays the role of a central server in a 

star network. A ring-based architecture where each agent forwards events to another agent instead of 

having a central coordinator would reduce context switches by up to 50%. Another possible 

architecture is a broadcasting mechanism where the buggy program broadcasts events to all secondary 

debugging tools. Furthermore, expand UDB/IDEA capabilities to include an optional inter-process 

communication can support collaborative debugging tools that may share a real time debugging 

session. It also allows experimentation with foreign agents that may live on different machines and 

communicate with a network protocol.  

Another area of future work may focus on improving the process of debugging using UDB. This 

can be achieved by adding more agents that utilize automatic debugging techniques for classes of 

bugs that are difficult to catch using standard techniques such as duplicated control logic, wrong 

operator, and aliasing-related bugs. Furthermore, UDB’s classical debugging features, such as 

breakpoints and watchpoints, are provided through monitored events and event filtering. Even though 

these techniques perform well during debugging, improving their performance can be achieved by 

further implementation of common techniques such as trapped virtual machine instruction for 

breakpoints, and trapped variable for watchpoints. Moreover, the increased number of utilized agents 

associates relatively with maintenance efforts during the debugging session. For example, more 

agents can easily mean more opened windows for the programmer to manage and organize. This has 

some relations to the current user interface maintained by UDB that is centered on a command line 

interface—it is better to have a GUI interface with a mechanism that integrates dynamic agents within 

the same GUI. These GUI interfaces can be reached by different means such as: 1) building an 

Eclipse plug-in for UDB, 2) extending DDD to support UDB, or 3) extending Unicon’s IDE to 

include UDB support. 

DT assertions are augmented with temporal logic operators. In this approach, assertions are 

added on the fly during the debugging session and virtually executed in the buggy program source 

code. Those assertions have capabilities that go beyond the limitations of conditional breakpoints and 

watchpoints, and the typical in-code assertions, which either of them cannot check the value of a 

variable that is active in the caller activation record. However, a case study can show how end-users 

can take advantage of temporal assertions and how fast it allows them to locate the root cause of a 
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bug (or a suite of bugs). This study can compare these newly introduced debugging techniques to 

standard techniques found in a typical debugger such as GDB. 

13.5. Extensibility to Other Languages 

The availability of the virtual machine and its runtime system made the current implementation 

for all of UDB, IDEA, and DTA economically feasible. The choice of Icon/Unicon as a target 

implementation is a sponsor requirement. However, the approach can be extended to other languages 

and debuggers, which is very important to increase the usability of these features. In this regard, a 

subset of the Alamo framework used by IDEA for Unicon debugging has been implemented for 

monitoring ANSI C and Python on both Sparc Solaris and Intel Linux. Future work may extend UDB 

and its IDEA debugging facilities to these languages, or port them to run on other debugging 

platforms such as JPDA [23]. Another potential future work is to use an instrumentation framework, 

such as ASM [111], PIN [112], and ATOM [113], as a substitute for AlamoDE. For example, Java 

may utilize different implementation of DT assertions. Any JPDA based source-level debugger, such 

as Eclipse, can be extended with similar implementation. The implementation of this extension will 

be relatively similar to the current implementation since both JPDA and AlamoDE provide an event-

driven debugging model. Java debuggers that use instrumentation frameworks (whether it is a third 

party instrumentation framework such as ASM or a native instrumentation package such as 

java.lang.instrument) can be extended by facilitating those frameworks for DT assertions with 

different tweaks to the current implementation. 

On the other hand, DT assertions’ initial implementation within an event-driven source-level 

debugger and a virtual machine based language does not limit them to this kind of debugger. For 

example, compiled languages such as C and C++ can take advantage of a third party instrumentation 

framework. Another way is to extend an existing source-level debugger such as GDB. GDB is already 

implements breakpoints by inserting illegal instructions and facilitates software implementation for 

watchpoints. Those can be extended to support automatic data collection for DT assertions. However, 

DT assertions may increase the number of inserted illegal instructions, which may produce a 

performance problem. A simpler approach to facilitate DT assertions for C and C++ programs would 

be to extend the implementation of GDB’s front-end debugger DDD [8]. Extending DDD would 

provide a free GUI interface. DDD already utilizes automatic techniques to obtain and visualize 

execution data. Extending DDD with DT assertions could be straight forward to adapt from already 

used techniques. Of course, the implementation will be different.  
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Appendix A: Dynamic Temporal Assertions 

This appendix provides sample temporal assertions that can be used in a UDB debugging session. 

A.1. Past-Time Assertions 

Temporal Intervals of Past-Time temporal assertions start at entering the assertion scope (calling 

the scope procedure) and end at reaching assertion’s source code location for the very first time after 

entering the scope 

A.1.1. Past-Time Temporal Logic Operators 

1. alwaysp() { expression }  

asserts that expression must always hold (evaluate to true) for each, state, temporal interval, 

and during the whole execution. 

2. sometimep() { expression } 

asserts that expression must hold at least once for each temporal interval, and during the whole 

execution. 

3. previous() { expression } 

asserts that expression must hold right at the last state before the end of the temporal interval 

4. since() { condition ==> expression } 

asserts that expression must hold right after condition is true up until the end of the temporal 

interval and for each interval. 

A.1.2. Example of Past-Time Assertions 

1. (udb) assert test.icn:50 alwaysp()  {  x < 10  }  

asserts that always in the procedure that contains line 50, the value of x is less than 10 

2. (udb) assert test.icn:50 previous()  {  x < y  } 

asserts that the last in the procedure that contains line 50, the value of last value x, before the 

end of the interval, is less than y 

3. (udb) assert test.icn:50 since()  {  x=0 ==> x<0  } 

asserts that always after x is 0 then x is less than 0 up until the end of the interval which is by 

reaching the source code of the assertion. 
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A.2. Future-Time Assertions 

Temporal Intervals of Future-Time temporal assertions start at reaching assertion’s source code 

location for the very first time after entering the assertion scope and ends at exiting the assertion 

scope (returning from the scope procedure). In this kind of temporal assertions, the source code 

location can be hit more than once before the interval is closed 

A.2.1. Future-Time Temporal Logic Operators 

1. alwaysf() { expression }  

asserts that expression must always hold (evaluate to true) for each, state, temporal interval, 

and during the whole execution. 

2. sometimef() { expression } 

asserts that expression must hold at least once for each temporal interval, and during the 

whole execution. 

3. next() { expression } 

asserts that expression must hold right at the very first state after the start of the temporal 

interval 

4. until() { condition ==> expression } 

asserts that expression must hold from the beginning of the temporal interval up until 

condition is true or the end of the temporal interval and for each interval. 

A.2.2. Example of Future-Time Assertions 

1. (udb) assert test.icn:50 alwaysf()  {  x < 10  }  

asserts that always in the procedure that contains line 50, the value of x is less than 10 

2. (udb) assert test.icn:50 next()  {  x < y  } 

asserts that the last in the procedure that contains line 50, the value of last value x, before the 

end of the interval, is less than y 

3. (udb) assert test.icn:50 until()  {  x=0 ==> x<0  } 

asserts that always after x is 0 then x is less than 0 up until the end of the interval which is by 

reaching the source code of the assertion. 
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A.3. All-Time Assertions 

Temporal Intervals of All-Time temporal assertions start at entering assertion’s scope and ends 

at exiting that scope; regardless of the provides source code location 

A.3.1. All-Time Temporal Logic Operators 

1. always() { expression } 

asserts that expression must always hold (evaluate to true) for each, state, temporal interval, 

and during the whole execution 

2. sometime() { expression } 

asserts that expression must hold at least once for each temporal interval, and during the 

whole execution 

A.3.2. Example of All-Time Assertions 

1. (udb) assert test.icn:50 always()  {  x < 10  }  

asserts that always in the procedure that contains line 50, the value of x is less than 10 

2. (udb) assert test.icn:50 sometime()  {  x < y  } 

asserts that at least one time in the procedure that contains line 50, the value of x is less than y 

3. (udb) assert test.icn:50 sometime()  {  x < foo:y  } 

asserts that always in the procedure that contains line 50, the value of x is less than last/current 

value of y from procedure foo 
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Appendix B: Evaluation and Performance 

This appendix provides detailed information about the performance information and the 

experiments conducted through this dissertation. 

B.1. Experimental Programs 

During the evaluation of the research conducted in this dissertation, a suite of seven programs 

are used as monitored targets during the experiments. These programs are:  

1. rsg.icn stands for random string generator. It generates randomly selected sentences from a 

grammar. It was written by Ralph E. Griswold. 

2. genqueen.icn program solve an arbitrary-size n-queens problem. The program solves the 

non-attacking n-queens problem for (square) boards of arbitrary size.  The problem consists of 

placing chess queens on an n-by-n grid such that no queen is in the same row, column, or 

diagonal as any other queen. The output is each of the solution boards; rotations not 

considered equal. It generates all possible solutions for the n-queen problem. It is mostly an 

algorithmic operation that uses generators. It was written by Peter A. Bigot. 

3. scramble.icn program reads a document and re-outputs it in a cleverly scrambled fashion. It 

performs string scanning intensive operations. It was written by Tenaglia. 

4. ichartp.icn program implements a simple chart parser – a slow but easy-to-implement 

strategy for parsing context free grammars. It operates in bottom-up fashion. This program 

was written by Richard L. Goerwitz. 

5. igrep.icn program is a string search utility that imitates to UNIX egrep. It uses the enhanced 

regular expression supported by regexp.icn. It was written by Robert J. Alexander. 

6. miu.icn program generates strings based on the MIU system. It was originally written by Cary 

A. Coutant, and modified by Ralph E. Griswold. 

7. pargen.icn program generates a parser for a context-free language. This program reads a 

context-free BNF grammar and produces an Icon program that is a parser for the 

corresponding language. It was written by Ralph E. Griswold. 
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B.2. Experimental Modes 

The following tables shows the average time of the programs described in the appendix C.1. 

Each of these programs is executed five times and the average of these five runs is calculated. These 

programs are used in six experiments.  

1. No monitoring involved which calculus the average time of each one of these program when it 

runs in its normal execution without it being monitored by another program 

2. Under UDB represents the execution time of the program is measured when it is used under 

UDB without any command involved. The monitored events are E_Exit, E_Error, and 

E_Signal 

3. Standalone mode represents that each one of these programs is run under the control of a 

standalone monitor. This monitor is simple enough to count the number of reported events. 

The same monitor is used under UDB in three different modes 

4. Internal-pcall mode represents the target program is running under UDB and the extension 

agent is used internally in the procedure mode 

5. External-pcall mode represents the target program is running under UDB and the extension 

agent is used in external mode that is utilizing the inter-program procedure calls 

6. External-coexpr mode represents the target program is running under UDB and the extension 

agent is used in the external mode that utilizes the co-expression context switch mode 

B.3. Monitored Events 

Out of AlamoDE’s 121 kinds of events, a suite of four events are monitored in the programs that 

are presented in the previous section. These events are source code related events. E_Deref is 

reported when a variable is dereferenced, E_Line is reported when execution changes from one line 

number into another, E_Pcall is reported when a user procedure is called, and E_Syntax is reported 

when a major syntax construct is entered or exited. These events are source code related events, 

which are mostly used debugging purposes. In order to find the actual cost of these monitored events, 

each of these events is monitored separately in each target program. The average time of the reported 

events is measured. 
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Table B.1. rsg Execution Time 

# The rsg: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.060 0.028 0.027 

2 Under UDB 0.142 0.081 0.027 

3 Standalone Mode 0.271 0.167 0.077 

4 Internal -pcall 0.592 0.475 0.076 

5 External-pcall 0.639 0.510 0.082 

6 External-coexpr 0.691 0.522 0.120 

 

 

Figure B.1. rsg Average Execution Time 

 

 

Figure B.2. rsg Reported Events 
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Table B.2. genqueen Execution Time 

# The genqueen: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.295 0.130 0.026 

2 Under UDB 0.356 0.162 0.037 

3 Standalone Mode  1.308 0.950 0.317 

4 Internal -pcall 3.075 2.694 0.335 

5 External-pcall 3.363 2.982 0.330 

6 External-coexpr 3.770 3.044 0.629 

 

 

Figure B.3. genqueen Average Execution Time 

 

 

Figure B.4. genqueen Reported Events 
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Table B.3. scramble Execution Time 

# The scramble: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.249 0.156 0.045 

2 Under UDB 0.281 0.189 0.048 

3 Standalone Mode  0.528 0.396 0.122 

4 Internal -pcall 1.034 0.895 0.120 

5 External-pcall 1.140 0.994 0.122 

6 External-coexpr 1.235 1.007 0.205 

 

 

Figure B.5. scramble Average Execution Time 

 

 

Figure B.6. scramble Reported Events 
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Table B.4. ichartp Execution Time 

# The ichartp: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.691 0.653 0.029 

2 Under UDB 0.751 0.694 0.033 

3 Standalone Mode  6.953 5.346 1.583 

4 Internal -pcall 16.394 14.713 1.632 

5 External-pcall 17.915 16.222 1.639 

6 External-coexpr 19.828 16.522 3.265 

 

 

Figure B.7. ichartp Average Execution Time 

 

 

Figure B.8. ichartp Reported Events 
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Table B.5. igrep Execution Time 

# The igrep: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.108 0.070 0.015 

2 Under UDB 0.131 0.090 0.022 

3 Standalone Mode  0.590 0.444 0.141 

4 Internal -pcall 1.424 1.251 0.152 

5 External-pcall 1.571 1.385 0.159 

6 External-coexpr 1.697 1.412 0.265 

 

 

Figure B.9. igrep Average Execution Time 

 

 

Figure B.10. igrep Reported Events 
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Table B.6. miu Execution Time 

# The miu: Execution Mode Real/s User/s Sys/s 

1 No Monitor 1.340 0.672 0.042 

2 Under UDB 1.370 0.715 0.056 

3 Standalone Mode  1.592 1.031 0.162 

4 Internal -pcall 2.165 1.602 0.158 

5 External-pcall 2.234 1.740 0.170 

6 External-coexpr 2.406 1.800 0.550 

 

 

Figure B.11. miu Average Execution Time 

 

 

Figure B.12. miu Reported Events 
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Table B.7. pargen Execution Time 

# The pargen: Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.028 0.011 0.015 

2 Under UDB 0.088 0.061 0.018 

3 Standalone Mode  0.043 0.021 0.017 

4 Internal -pcall 0.115 0.086 0.021 

5 External-pcall 0.133 0.089 0.023 

6 External-coexpr 0.138 0.089 0.030 

 

 

Figure B.13. pargen Average Execution Time 

 

 

Figure B.14. pargen Reported Events 
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B.4. Average Monitored Events (E_Deref, E_Line, E_Syntax, E_Pcall) 

This appendix shows the average of all experiments provided in Appendix B.3. 

 

Table B.8. The Average Monitoring Time of All Events 

# Execution Mode Real/s User/s Sys/s 

1 No Monitor 0.396 0.246 0.028 

2 Under UDB 0.446 0.284 0.035 

3 Standalone Mode  1.612 1.194 0.346 

4 Internal -pcall 3.543 3.102 0.356 

5 External-pcall 3.856 3.417 0.361 

6 External-coexpr 4.252 3.485 0.723 

 

 

Table B.9. Number of Reported Events  

# Execution Mode 

Average Number  of Reported Events 

E_Deref E_Line E_Syntax E_Pcall Other 

1 rsg 61,619 41,032 14,534 1,672 61,619 

2 gengueen 182,162 35,568 7,150 1,001 182,162 

3 scramble 543,746 248,062 41,266 16,789 543,746 

4 ichartp 2,111,315 2,107,136 30,4027 136,194 2,111,315 

5 igrep 197,311 148,270 20,088 16,013 197,311 

6 miu 212,421 83,539 9,289 1,868 212,421 

7 pargen 1,351 1,806 515 178 1,351 
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Figure B.15. Average Time of all Events 

 

 

Figure B.16. Average of E_Deref, E_Pcall, E_Line, and E_Syntax Events 
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Appendix C: UDB Command Summary 

This appendix provides a summary of UDB commands with more examples. It can be used as a quick 

command reference. 

C.1. Essential Commands 

The most common commands that a user has to know in order to execute and control a program under 

UDB. 

udb  program   Starts UDB and loads the executable program into it. 

run [arglist]   Starts the already loaded program [with arglist]. 

b procedure   Sets a breakpoint at the entry of procedure. 

bt backtrace: displays the current program stack ; where is an alias of 

this command. 

p expr    print: displays the value of expr. 

c    continue: resumes the running of the program. 

n    next: executes the next line and steps over any procedure call in it. 

s    step: executes the next line and steps into any procedure call in it. 

 

C.2. What to Do after a Crash 

The following commands are good enough to start an investigation after a crash on the buggy 

program. 

where     displays the current execution stack 

frame     provides information about the currently selected stack frame 

up    moves the currently selected stack frame one frame up on the 

execution stack (current frame + 1). 

down  moves the currently selected stack frame one frame down on the 

execution stack (current frame - 1). 

print      allows you to print variable values. 

 

C.3. Starting UDB 

Different ways to start UDB and to load a program into it. 

udb     Starts UDB with no executable. 

udb program   Starts UDB and loads the executable program into it. 
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C.4. Stopping UDB 

One command that is needed in order to exit UDB from any point. 

quit    Exits UDB.  q and Ctrl-C are aliases. 

C.5. Getting Help 

An important command to inquire and get help about other UDB commands. 

help    Lists all classes of commands.  h and ? are aliases. 

help class   Provides a specific description for a class of commands. 

help command   Provides a detailed description about a specific command. 

C.6. Executing a Program 

How to start the execution of a loaded program. 

run arglist Starts the currently loaded program with arglist.  r arglist  is an 

alias. 

run    Starts the currently loaded program without arguments. r is an alias. 

load program Loads the program executable into UDB; if a program is already 

loaded, this command replaces it with a new program.  

C.7. Breakpoints 

Important commands on how to make the program stop at certain points; source code locations such 

as a line number or an entry to a procedure or method. 

break line If execution is stopped, it assumes line within the current file, 

otherwise, line is assumed to be within the file that contains 

procedure main(). b line is an alias. 

break [file] line  Sets a breakpoint at line number [in file]. b [file] line is an alias, i.e. 

b test.icn 15. 

b procedure   Sets a breakpoint at the entry of procedure. 

 

info break [id] Shows a complete list of all breakpoints and their status. If id is 

provided it shows only the breakpoint with the number id. info 

breakpoints [id] is an alias. 

info break [file] Shows a complete list of all breakpoints and their status; if file is 

provided, it shows only breakpoints from that [file]. info 

breakpoints [file] is an alias. 
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clear    Removes all breakpoints. 

clear break   Removes all breakpoints. 

clear break [file] line  Removes the breakpoint at line [in file]. 

clear break procedure  Removes the breakpoint at the entry to procedure. 

 

delete break [n] Deletes all breakpoints, if [n] is provided, it only deletes the 

breakpoint with the id number [n]; deleted breakpoints are still seen 

by the command info break, but marked as deleted. 

 

enable break [n] Enables all disabled breakpoints, if [n] is provided, it only enables 

the breakpoint with the id number [n]. 

disable break [n] Disables all breakpoints, if [n] is provided, it only disables the 

breakpoint with the id number [n]. 

C.8. Watchpoints 

Techniques to observe certain variable activities such as a variable being assigned, read, changed 

value, or changed type. Watchpoints may cause the program to stop at specific action(s), or they may 

work silently collecting information about specific action(s). Most watchpoints supports relational 

operations such as =, ~=, <, >, <=, >=, which they can be applied on the value or type of the observed 

variable or keyword.  

awatch [-silent] [count]  variable  [[=|>|<|<=|>=|~=]  value] 

Sets an assignment watchpoint on variable whenever assigned, with 

an optional condition on the assigned value. watch is an alias to this 

awatch command. 

If –silent is provided, the watchpoint does not notify the user at 

every incident. 

If count is provided and count > 0, it observes the first count 

number of incidents. 

If count is provided and count < 0, the user is able to trace back the 

last count number of incident’s locations and values.  

 

watch –silent variable   Sets a silent watchpoint on variable whenever assigned. 

watch count variable Sets a normal watchpoint on variable on the first count number of 

assignments. 

watch -count variable Sets a normal watchpoint on variable and keeps track of the last 

count number of assignments.  

watch variable = value Sets a normal watchpoint on variable whenever assigned with 

value. 

watch variable > value Sets a silent watchpoint on variable whenever assigned and the 

assigned value > value. 
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watch –s n variable Sets a silent watchpoint on variable on the first n number of 

assignments. 

 

rwatch [–silent] [count]  variable  [[=|>|<|<=|>=|~=]  value] 

Sets a watchpoint on variable whenever read. Other arguments are 

similar to the watch command. 

 

vwatch [–silent] [count] variable  [[=|>|<|<=|>=|~=]  value] 

Sets a watchpoint on variable whenever assigned and the new value 

is different from the old one (changed value). Other arguments are 

similar to the watch command.  

 

twatch [–silent] [count]  variable  [[=|~=]  type ] 

Sets a watchpoint on variable whenever assigned and the type of 

new value is different from the type of the old one (changed type). 

Other arguments are similar to the watch command. 

 

swatch [–silent][count] 

Sets a watchpoint on string scanning environment; in particular the 

explicit and implicit change of &pos and &subject keywords. 

 

info watchpoints Shows a complete list of all watchpoints; info watch and watch are 

aliases. 

info awatch   Shows a list of all assignment watchpoints. 

info rwatch   Shows a list of all read watchpoints. 

info vwatch   Shows a list of all value change watchpoints. 

info twatch   Shows a list of all type change watchpoints. 

 

clear watch Clears all watchpoints; watchpoints with different types are cleared. 

If watch is replaced with any of awatch, rwatch, twatch, vwatch, 

or swatch, it clears only the specified type of watchpoints. 

delete watch [n] Deletes all watchpoints, if [n] is provided, it only deletes the 

watchpoint with the id number [n]. If watch is replaced with any of 

awatch, rwatch, twatch, vwatch, or swatch, it deletes only the 

specified type of watchpoints. 

 

enable watch [n] Enables all disabled watchpoints; if [n] is provided, it only enables 

the watchpoint with the id number [n]. If watch is replaced with any 

of awatch, rwatch, twatch, vwatch, or swatch, it enables only the 

specified type of watchpoints. 

disable watch [n] Disables all enabled watchpoints; if [n] is provided, it only disables 

the watchpoint with the id number [n]. If watch is replaced with any 

of awatch, rwatch, twatch, vwatch, or swatch, it disables only the 

specified type of watchpoints.  
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C.9. Tracepoints  

Techniques are used to observe execution behavior such as the type of the returned value from a user-

defined procedure, built-in function, and language operator. It is intended to provide more 

lightweight flexibility to simplify and speed up the process of manual investigations. Behaviors can 

be general such as start or end, or detailed such as call and resume as specific details for the start 

behavior, and return, suspend, fail, and remove as specific details for end behavior. In particular, 

the return behavior is applicable for extra condition on the returned value. If the flag –silent is 

provided, the tracepoint will not stop the execution but the user will be able to check the traced info 

from any point during or after the execution. 

trace [–silent] [count] procedure [behavior [op value]] 

Sets a tracepoint on procedure whenever the provided behavior is 

satisfied. 

If behavior is not provided, all behaviors are traced. 

If –silent is provided, the tracepoint does not notify the user at every 

incident. 

If count is provided and count > 0, it traces the first count number 

of incidents. 

If count is provided and count < 0, the user is able to trace back the 

last count number of incidents. 

trace bar   Sets a tracepoint on all valid behaviors of the procedure bar. 

trace bar call  Sets a tracepoint on procedure bar whenever it is called. 

Action is very similar to the break bar command. 

trace bar return  Sets a tracepoint on procedure bar whenever it is returned. 

trace bar return <= 1 Sets a tracepoint on procedure bar whenever it returns a value <= 

1. 

trace 10 bar resume   Sets a tracepoint on procedure bar for the first 10 times it resumes. 

trace bar fail   Sets a tracepoint of procedure bar whenever it is failed. 

trace –silent bar Sets a silent tracepoint on all valid behaviors of the procedure bar; 

this tracepoint will not stop the execution at every traced behavior 

incident. 

 

trace [–silent] [count] function [behavior  [op value]] 

Sets a tracepoint on built-in function whenever the provide behavior 

is satisfied. If behavior is not provided, all behaviors are traced. 

Other arguments are similar to the procedure trace command. 

trace abs call   Sets a tracepoint on the function abs() whenever it is called. 

trace write fail   Sets a tracepoint on the function write() whenever it is failed. 

trace cos return < 0 Sets a tracepoint on the function cos() whenever it is returns a 

value < 0. 
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trace [–silent] [count] operator [behavior [op value]] 

Sets a tracepoint on a built-in operator whenever the provided 

behavior is satisfied. If behavior is not provided, all behaviors are 

traced. operator is one of the following: ( +, -, *, /, \, =, ~=, ==, 

~==, ===, ~===, <, <=, <<=, >, >=, >>=, ++, --, **, !, ?, []). 

 

trace [] fail   Sets a tracepoint on [] (subscript operation) whenever it is failed. 

trace ! suspend   Sets a tracepoint on ! (Bang operator) whenever it is suspended. 

trace = fail   Sets a trace point on = whenever it is failed. 

trace ~== Sets a trace point on ~== whenever any of its behaviors is satisfied 

(occurred). 

trace ~== return Sets a tracepoint on ~== whenever it returns (the operation 

succeeded because both sides are lexically not equal). 

trace ~== return = “ab” Sets a tracepoint on ~== whenever it returns (the operation 

succeeded because both sides are lexically equal to ―ab‖). 

 

info tracepoints Prints a complete list of all tracepoints; info trace and trace are 

aliases. 

info trace [n]   Prints detailed information about the tracepoint with id number [n]. 

info trace [name]  Prints detailed information about the tracepoint set on [name]. 

 

info trace enabled  Prints a complete list of all enabled tracepoints. 

info trace disabled  Prints a complete list of all disabled tracepoints. 

info trace deleted  Prints a complete list of all deleted tracepoints. 

 

clear trace [n] Clears all tracepoints, if [n] is provided, it only clears the tracepoint 

with id number [n]. 

clear trace [name] Clears all tracepoints, if [name] is provided, it only clears the 

tracepoint set on [name]. 

delete trace [n] Deletes all tracepoints, if [n] is provided, it only deletes the 

tracepoint with id number [n]. 

delete trace [name] Deletes all tracepoints, if [name] is provided, it only deletes the 

tracepoint set on [name]. 

 

enable trace [n] Enables all tracepoints; if [n] is provided, it only enables the 

tracepoint that has the id [n]. 

enable trace [name] Enables all tracepoints; if [name] is provided, it only enables the 

tracepoint set on [name]. 

disable trace [n] Disables all tracepoints; if [n] is provided, it only disables the 

tracepoint that has the id number [n]. 

disable trace [name] Disables all tracepoints; if [name] is provided, it only disables the 

tracepoint set on [name]. 
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C.10. Program Stack 

Techniques to investigate the interpreter stack (execution stack). When the execution stops at any 

point, the currently selected frame points at the frame of the currently executing procedure, a user 

may change the currently selected frame or traceback all stack frames. 

backtrace [n] Prints a trace of all frames in the current stack. If [n] is provided, it 

prints the n
th
 innermost frames when n>0, and it prints the n

th
 

outermost frames when n < 0. where [n] and bt [n] are aliases; i.e.  

where,   where 10,  where -10,   bt ,   bt 10. 

 

frame [n] Selects and displays information of frame number [n]; if [n] is not 

provided, it displays information about the currently selected frame. f 

[n] is an alias. 

 

up [n] Moves the selected frame [n] frames up; if [n] is not provided, it 

moves the currently selected frame one frame up. 

down [n] Moves the selected frame [n] frames down; if [n] is not provided, it 

moves the currently selected frame one frame down. 

C.11. Execution Control 

Includes commands to step and resume the execution of the program. 

continue   Resumes program’s execution. cont and c are aliases. 

step [count] Executes the program until a new line is reached; if [count] is 

specified, it repeats the command count more times. s  and  s 

[count] are aliases. 

next [count] Executes the next line and steps over any procedure call; if [count] 

is specified, it repeats the command count more times. n and  n 

[count] are aliases. 

return Completes the execution of the current procedure and returns back to 

the place of calling to step on the next statement after the call. ret 

and finish are aliases. 

C.12. Display and Change Data 

Ways to examine and change data in the current execution state; change can be done by assigning to 

variables or keywords. 

print variable Prints the value of variable; if variable is a reference to a structure, 

then it displays its ximage, otherwise it displays its simple value. p 

is an alias. 
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print &keyword  Prints the value of &keyword; For example: 

print &pos 

 

print expr   Prints the evaluation of the expr. For example: 

p L[5] : prints the contents of L[5]. 

p S[ i : 10] : prints the characters between i and 10 of string S. 

print r.a : prints the contents of failed a of record r. 

 

print variable = expr  Evaluates expr and assigns its value to variable. For example: 

print x = 10  

print L[1] = 1000  

print T[“one”] = “First”  

print S[4] = “K”  

print S[5:10] = “insert a string”  

print r.a = 4.5  

print x = y; where y is another variable. 

print &keyword = value Assigns a value to a &keyword; For example: 

print &pos = 1 

print &subject = “ABCcba” 

 

print *variable Prints the size of variable whenever it is applicable; i.e. print *L, or 

print *S. 

print !variable   Generates and prints the values of variable; i.e. print !L, or print !S. 

 

print &features   Prints the first generated value out of the keyword &features. 

print ! &features  Prints all generated values out of the keyword &features.  

 

info local  Shows all local variable names in the currently selected frame. print 

–local is an alias. 

info static  Shows all static variable names in the currently selected frame. print 

–static is an alias. 

info parameter Shows all parameter variable names in the currently selected frame. 

print –param is an alias. 

C.13. Source Files and Code Info 

Commands to look up source files and code. UDB tries to open user and library files, which are used 

to build the executable. A user can navigate source files and source code based on the executable. 

list Displays ten lines of source code; if execution is paused, the printed 

lines are from the current line and file, otherwise, the printed lines 

are from the file that has the procedure main().  l is an alias. 

list +    Displays the next ten lines of source code. l + is an alias. 

list -     Displays the previous ten lines of source code. l - is an alias. 
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list procedure   Displays ten source lines surrounding procedure. 

list [file] line Displays ten source lines surrounding line [ in file ]; if line is 

positive, counts will starts from the top of the file, otherwise, count 

starts from the bottom of the file. i.e. l -25: shows ten lines 

surrounding the line number 25 counting backward from the end of 

file. 

 

info  source Prints a detailed summary about the loaded executable. source is an 

alias. 

info  file  Prints a list of all source files in use including library files.  source 

file is an alias. 

info  found  Prints a list of all loaded source files including library files.  source 

found is an alias. 

info  missing  Prints a list of all not loaded used source files.  source missing is an 

alias. 

info  user  Prints a list of all user-defined source file names in use. source user 

is an alias. 

info  lib    Prints a list of all library file names in use. source lib is an alias. 

 

info  package    Prints a list of all package names in use. source package is an alias. 

info  class    Prints a list of all class names in use. source class is an alias. 

info  record   Prints a list of all record names in use. source record is an alias. 

info  procedure   Prints a list of all procedure names in use. source procedure is an 

    alias. 

info  function  Prints a list of all built-in function names in use. source function is 

an alias  

info  global  Prints a list of all global variable names in use. source global is an 

alias. 

info  icode  Prints information about the current icode binary such as its version. 

source icode is an alias.  

C.14. Memory Usage 

Important commands to look up the memory usage 

print &regions Prints a summary of the total available memory an how mach in each 

region. 

print &storage Prints a summary of the total currently used memory and how much 

is currently allocated in each region. 

print &allocations Prints a summary of the total allocations up to that point of 

execution. Memory that cleaned up by the GC is still count. 

print &collections Prints a summary of the total number of Garbage Collections 

occurred up to that point of execution. 
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C.15. Shell Commands 

Some of the most needed shell commands during a UDB session. 

ls    Equivalent to the Unix ls shell command. 

pwd    Equivalent to the Unix pwd shell command. 

cd    Equivalent to the Unix cd shell command. 

C.16. Extension Agents 

How to load and manage external standalone debugging agents on the fly during the debugging 

session.  

enable internal agent Enables the internal agent named agent on the fly during the 

debugging session 

disable internal agent Disables the internal agent named agent on the fly during the 

debugging session 

info internal Prints information about all internal agents available in the session 

and the system 

info internal agent  Prints information about the internal agents named agent 

 

load –agent agent Loads the standalone external agent named agent on the fly during 

the debugging session 

 

enable external Enables all external agent that are loaded and disabled in the current 

session 

enable external agent Enables the external agent named agent that is loaded and disabled in 

the current session 

disable external   Disables all external agent that are loaded in the current 

session 

disable external agent Disables the external agent named agent that is loaded and enabled in 

the current session 

 

info external Prints information about all external debugging agents available in 

the session 

info external agent  Prints information about the external agent named agent 

C.17. Temporal Assertions 

Temporal Assertions-related commands. 

assert file:line always() { expr }   expr must hold at all times 

assert file:line sometime() { expr }  exper must hold at least once during each interval 
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assert file:line alwaysp() { expr }    expr must hold at all times 

assert file:line sometimep() { expr }  exper must hold at least once during each interval 

assert file:line since() { p1 ==> p2 } since p1 holds, p2 must  hold at all times up to the end of 

the interval 

assert file:line previous() { p }      p must hold at the previous state right before the assertions' 

location 

 

assert file:line alwaysf() { expr }   expr must hold at all times 

assert file:line sometimef() { expr }  exper must hold at least once n during each interval 

assert file:line until() { p1 ==> p2 } p1 holds until p2 holds 

assert file:line next() { p }          p must hold at the next state right after the assertions' 

location 

 

info assert        Prints information about all assertions available in the 

session 

info assert id        Prints information about the assertion number id 

info assert id hit Prints information about the assertion number id and its 

interval number hit. 
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