

An Extensible Debugging Architecture

Based on a Hybrid Debugging Framework

A Dissertation

Presented in Partial Fulfillment of the Requirement for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

By

Ziad A. Al-Sharif

December 1, 2009

Major Professor: Dr. Clinton L. Jeffery

Copyright © 2008-2009 Ziad Al-Sharif. All rights reserved.

i

Authorization to Submit Dissertation

This dissertation of Ziad A. Al-Sharif, submitted for the degree of Doctor of Philosophy with a

major in Computer Science and entitled ―An Extensible Debugging Architecture Based on a

Hybrid Debugging Framework,‖ has been reviewed in final form. Permission, as indicated by the

signatures and dates given below, is now granted to submit final copies to the College of Graduate

Studies for approval.

Major Professor: Date:

 Dr. Clinton L. Jeffery

Committee Member: Date:

 Dr. Robert B. Heckendorn

Committee Member: Date:

 Dr. Robert Rinker

Committee Member: Date:

 Dr. Gregory W. Donohoe

Department

Administrator:

Date:

 Dr. Gregory W. Donohoe

Discipline’s

College Dean:

Date:

 Dr. Donald M. Blackketter

Final Approval

and Acceptance

by the College of

Graduate Studies:

Date:

 Dr. Margrit Von Braun

ii

Abstract

The cost of writing debuggers is very high. Most debuggers are written employing low level

operating system and hardware specific code, which is hard to port to new platforms or architectures

and to extend with new debugging techniques. Moreover, current debuggers are usually limited in the

amount of analysis that they perform and the level of detail that they provide in order to assist with

debugging. Most debuggers are well suited for a specific class of bugs. Different bugs call for

different debugging techniques, so experimentation is needed in order to develop the features that will

someday be widely adopted in debuggers. This dissertation contributes three primary results.

First, it introduces an event-driven debugging framework named AlamoDE (Alamo—Debug

Enabled). The role of this framework is analogous to an abstraction layer upon which to build

debuggers. AlamoDE 1) provides in-process debugging support with simple communication and no

intrusion on the buggy program space, 2) enables debugging tools to be written at a high level of

abstraction, and 3) facilitates developers of experimental automatic debugging features in a very high

level language. AlamoDE supports construction of a variety of user-defined debugging tools that

range from classical source-level debuggers to automated and dynamic analysis techniques.

Second, this dissertation presents an extensible agent-based debugging architecture named IDEA

(Idaho Debugging Extension Architecture). IDEA offers novel debugging techniques that break the

rigidness, closeness, and inextensibility of most current debuggers. It provides programmers with the

ability to easily implement, test, and combine user-defined debugging agents, and offers a simple

dynamic and static extension mechanism.

Finally, this dissertation provides a production source-level debugger for the Unicon language

named UDB. UDB leverages the classical interactive debugging process with 1) built-in agents

employing automatic detection and dynamic analysis techniques, 2) a simple interface to load,

unload, enable, and disable separately-compiled dynamically-loaded external debugging agents that

work in conjunction with the conventional source-level debugging session and its internal agents, and

3) Dynamic Temporal Assertions (DTA) that assert a sequence of runtime properties. DTAs are

introduced for the first time within typical source-level debuggers that targets sequential programs.

While IDEA simplifies a source-level debugger’s extensibility and eases its usability, debugging

agents add indispensable value with moderate impact on the performance of the debugger. Different

agents can work in concert with each other to provide programmers with better understanding of the

program’s execution behavior and simplify the process of debugging and hunting for elusive and hard

to catch bugs.

iii

Curriculum Vita

Ziad A. Al-Sharif

Department of Computer Science

University of Idaho

Moscow, ID, 83844

zsharif@gmail.com

Future Address

Department of Computer Science

Jordan University of Science and Technology

Irbid, Jordan, 22110

P.O.Box 3030

Education

December 2009

Doctor of Philosophy in Computer Science

Department of Computer Science, University of Idaho, Moscow, ID, 83844

GPA: 4.0 out of 4.0

August 2005

Master of Science in Computer Science

Department of Computer Science, New Mexico State University, Las Cruces, NM, 88001

GPA: 3.559 out of 4.0

February 2000

Bachelor of Science in Computer Science

Department of Computer Science, AL al-Bayt University, Mafraq, Jordan

GPA: 81.15% (very good)

Ranked second among my peers in the graduation ceremony of 2000

Publications

Journal Articles

1. Ziad Al-Sharif and Clinton Jeffery, 2010. UDB: An Agent-Oriented Source-Level Debugger.

To appear in the International Journal of Software Engineering (IJSE), Vol. 3, No. 1, January

2010.

iv

Conference Papers

1. Ziad Al-Sharif and Clinton Jeffery, 2009. Language Support for Event-Based Debugging. In

Proceedings of the 21st International Conference on Software Engineering and Knowledge

Engineering (SEKE 2009), Boston, July 1-3, 2009. pp. 392-399. (Acceptance rate 38%).

2. Ziad Al-Sharif and Clinton Jeffery, 2009. A Multi-Agent Debugging Extension Architecture.

In Proceedings of the 21st International Conference on Software Engineering and Knowledge

Engineering (SEKE 2009), Boston, July 1-3, 2009. pp. 194-199.

3. Ziad Al-Sharif and Clinton Jeffery, 2009. An Agent Oriented Source-level Debugger on Top

of a Monitoring Framework. In Proceedings of the Sixth International Conference on

Information Technology: New Generations (Las Vegas, Nevada, April 27 - 29, 2009). ITNG.

IEEE Computer Society. pp. 241-247. (Acceptance rate 29%).

4. Ziad Al-Sharif and Clinton Jeffery, 2009. An Extensible Source-Level Debugger. In

Proceedings of the 2009 ACM Symposium on Applied Computing (Honolulu, Hawaii, March

9-12). SAC '09. pp. 543-544. (a 2 page abstract with poster).

5. Hani Bani-Salameh, Clinton Jeffery, Ziad Al-Sharif, and Iyad Abu Doush. 2008. Integrating

Collaborative Program Development and Debugging within a Virtual Environment. In

Groupware: Design, Implementation, and Use: 14th International Workshop, CRIWG 2008.

Omaha, NE, USA. September 14-18, 2008. Lecture Notes in Computer Science, vol. 5411.

Springer-Verlag, pp. 107-120.

6. Ziad Al-Sharif and Clinton Jeffery, 2006. Adding High Level VoIP Facilities to the Unicon

Language. In Proceedings of the Third International Conference on Information Technology:

New Generations (April 10 - 12, 2006). ITNG. IEEE Computer Society. pp.524-529.

7. Clinton Jeffery, Omar El-Khatib, Ziad Al-Sharif, and Naomi Martinez, 2005. Programming

Language Support for Collaborative Virtual Environments. In Proceedings of the

International Conference on Computer Animation and Social Agents (CASA'05).

Technical Reports

1. Ziad Al-Sharif. Debugging with UDB 2.0: User Guide and Reference Manual. Unicon

Technical Report #10, http://unicon.org/utr/utr10.pdf. December 2009.

2. Ziad Al-Sharif, A High Level Audio Communications API for the Unicon Language, Master

Thesis, Department of Computer Science, New Mexico State University, August 2005.

v

Acknowledgment

I would like to express my gratitude to all the people who helped me develop this dissertation. It

has been a long road involving major research challenges and overcoming critical development

obstacles. First, I would like to thank my major professor Dr. Clinton L. Jeffery, whom without this

dissertation could not have been written. He did not only serve as my supervisor but also encouraged

and challenged me throughout my academic program. He never accepted less than my best efforts. I

thank him for all his encouragement, patience, support, and knowledge.

I also would like to thank my committee members: Dr. Robert Rinker, Dr. Robert Heckendorn,

and Dr. Gregory Donohoe, who did not save any effort to provide valuable and constructive criticism

about the presented research and the formatting of this dissertation. Their significant feedback guided

me through the dissertation process; I would like to thank them all.

I also would like to thank Dr. Phillip Thomas from the National Library of Medicine. Dr.

Thomas was involved in this research from the beginning. He and his research group at the National

Library of Medicine were benevolent to test the UDB debugger on their programs and report back

with thoughtful feedbacks and suggestions. Dr. Thomas was kind enough to voluntarily read the early

draft of this dissertation. He has provided me with significant enhancements.

This research was supported by the National Library of Medicine Specialized Information

Services Division, initially through an appointment to the National Library of Medicine Research

Participation Program. This program is administered by the Oak Ridge Institute for Science and

Education for the National Library of Medicine. I would like thank their endless support. Finally, I

would like to thank the Department of Computer Science at Jordan University of Science and

Technology (JUST) for their generous sponsorship, which allowed me to pursue my MS. and Ph.D.

degrees.

Ziad A. Al-Sharif

December 1, 2009

vi

Table of Contents

Authorization to Submit Dissertation i

Abstract ii

Curriculum Vita iii

Acknowledgment v

Table of Contents vi

List of Figures xiv

List of Tables xviii

List of Equations xx

Part I Introduction and Background .. 1

Chapter 1 Introduction and Objectives .. 2

1.1. Dissertation Scope .. 2

1.2. Context and Motivation .. 3

1.3. The Problem ... 4

1.4. The Solution Approach Used in This Research ... 5

1.4.1. Debugging Framework ... 6

1.4.2. Extension Architecture ... 7

1.4.3. Very High Level Debugger .. 8

1.4.4. Extension Agents .. 9

1.5. The Results ... 9

vii

1.6. Definitions .. 10

1.7. Dissertation Outline .. 10

Chapter 2 Background ...13

2.1. Program Bugs ... 13

2.2. Runtime Bugs ... 15

2.3. Debugging Terms ... 15

2.4. Debugging Tools .. 19

2.4.1. Architecture .. 20

2.4.2. Implementation ... 21

2.4.3. Interface .. 21

2.5. Debugging Process ... 22

2.6. Debugging Process Architecture .. 23

2.6.1. Local Debugging .. 24

2.6.2. Remote Debugging ... 24

2.6.3. Collaborative Debugging .. 25

2.6.4. Debugging Parallel and Distributed Systems ... 26

Chapter 3 Manual Debugging Tools and Techniques27

3.1. In-Code Debugging .. 28

3.1.1. Print Statements .. 28

3.1.2. Assertions ... 29

3.2. Dynamic Source-Level Debugging .. 29

3.2.1. Forward Debugging .. 29

3.2.2. Bidirectional Debugging .. 33

3.2.3. Programmable Debugging .. 35

3.2.4. Trace-Based Debugging ... 37

3.2.5. IDE-Based Source-Level Debugging ... 38

3.3. Model-Level Debugging .. 39

3.4. Summary .. 39

viii

Chapter 4 Automatic Debugging Tools and Techniques41

4.1. Static Debugging .. 42

4.2. Abstract Debugging .. 43

4.3. Dynamic Debugging... 44

4.3.1. Model Based Software Debugging ... 44

4.3.2. In-Process Debugging (Debugging Libraries) .. 46

4.3.3. Dedicated Debuggers .. 47

4.4. Summary .. 53

Part II Event-Based Debugging Framework ...55

Chapter 5 Alamo Monitoring Framework ...56

5.1. Unicon’s Co-Expression Type ... 56

5.2. Architecture .. 57

5.3. Features .. 58

5.3.1. VM Instrumentation ... 58

5.3.2. Dynamic Loading ... 58

5.3.3. Synchronous Execution .. 59

5.3.4. In-process Execution Model ... 59

5.4. High-Level Execution Monitoring ... 60

5.4.1. Event Masking .. 60

5.4.2. Loading the Target Program ... 61

5.4.3. Activating the Target Program ... 61

5.5 Limitations ... 62

Chapter 6 AlamoDE: Alamo’s Extensions for Debugging Support63

6.1. Virtual Machine Instrumentation ... 63

6.2. Inter-Program Variable Safety ... 64

6.3. Syntax Instrumentation .. 67

6.4. High-Level Interpreter Stack Navigation ... 71

ix

6.5. Signal Handling .. 73

Chapter 7 AlamoDE: The Debugging Framework75

7.1. Debugging Events .. 75

7.2. Event Filtering .. 77

7.3. Execution State Inspection and Modification .. 78

7.3.1. Variables ... 78

7.3.2. Procedures and Stack Frames ... 80

7.3.3. Executed Source Code .. 81

7.4. Advanced Debugging Support ... 81

7.4.1. Multitasking .. 81

7.4.2. Event Forwarding ... 81

7.4.3. Custom Defined Debugging Tools ... 82

Part III Very High Level Extension Mechanism ...84

Chapter 8 IDEA: A Debugging Extension Architecture85

8.1. Debugging with Agents .. 85

8.2. Design ... 86

8.3. Implementation ... 86

8.4. Source Code ... 87

8.5. Extensions .. 89

8.5.1. Sample Agent ... 89

8.5.2. External Agents .. 91

8.5.3. Internal Agents ... 92

8.5.4. Migration from Externals to Internals .. 93

8.5.5. Simple Agent Migration Example .. 94

Chapter 9 UDB: The Unicon Source-Level Debugger97

9.1. UDB’s Debugging Features ... 97

x

9.2. Design ... 98

9.3. Debugging Core ... 99

9.3.1. Console ... 101

9.3.2. Session .. 101

9.3.3. Debugging State. .. 101

9.3.4. Evaluator ... 102

9.3.5. Generators ... 103

9.3.6. Main Debugging Loop ... 104

9.4. Implementation ... 104

9.4.1. Loading a Buggy Program .. 106

9.4.2. Breakpoints ... 106

9.4.3. Watchpoints .. 107

9.4.4. Tracepoints ... 110

9.4.5. Stepping and Continuing .. 111

9.4.6. Stack Navigation .. 113

9.4.7. Data Navigation/Modification .. 113

Part IV Extension Agents ...114

Chapter 10 UDB’s Advanced Debugging Agents ..115

10.1. UDB’s Extensibility ... 115

10.2. Visualization Agent .. 116

10.3. Language-Specific Agents ... 117

10.3.1. Variable Changing Type (or Domain) .. 118

10.3.2. Failed Expressions .. 118

10.3.3. Redundant Conversion ... 118

10.4. Language-Independent Agents ... 119

10.4.1. Data Related Agents ... 119

10.4.2. Behavior Related Agents .. 120

xi

Chapter 11 DTA: Dynamic Temporal Assertions122

11.1. Temporal Assertions .. 122

11.1.1. Temporal Logic .. 123

11.1.2. Temporal Assertions vs. Ordinary Assertions .. 123

11.1.3. Temporal Assertions vs. Conditional Breakpoints 125

11.2. UDB’s DT Assertions .. 126

11.3. Debugging with DT Assertions .. 128

11.3.1. Example #1: Loop Invariant ... 129

11.3.2. Example #2: Sequence of Variable States .. 130

11.3.3. Example #3: Variables’ State from Different Scopes 131

11.4. Design ... 132

11.4.1. Temporal State .. 132

11.4.2. Temporal Interval ... 132

11.4.3. Assertion’s Evaluation .. 134

11.4.5. Evaluation Suite .. 136

11.4.6. Temporal Assertions & Atomic Agents ... 137

11.4.7. Evaluation Log ... 138

11.5. Assertion Language .. 139

11.5.1. Syntax ... 140

11.5.2. Past-Time Operators ... 141

11.5.3. Future-Time Operators ... 141

11.5.4. All-Time Operators .. 142

11.6. Implementation ... 142

11.7. Summary .. 143

Part V Evaluation and Results ..145

Chapter 12 Performance and Evaluation ...146

12.1. AlamoDE .. 146

12.2. Alamo’s New Extensions ... 150

xii

12.2.1. Trapped Variable Assignment .. 150

12.2.2. Syntax Instrumentation ... 150

12.3. IDEA’s Evaluation ... 155

12.3.1. Procedure Call vs. Co-Expression Context Switch 155

12.3.2. Extension Agents .. 157

12.3.3. Experiment ... 160

12.4. UDB’s Evaluation .. 164

12.5. DT Assertions Evaluation .. 166

12.5.1. Evaluation ... 167

12.5.2. Challenges .. 170

Chapter 13 Conclusion and Future Work ..171

13.1. Conclusion .. 171

13.2. Discussion .. 174

13.3. Limitations .. 175

13.4. Future Work ... 176

13.5. Extensibility to Other Languages ... 178

Appendices ...179

Appendix A: Dynamic Temporal Assertions ...180

A.1. Past-Time Assertions ... 180

A.1.1. Past-Time Temporal Logic Operators ... 180

A.1.2. Example of Past-Time Assertions ... 180

A.2. Future-Time Assertions ... 181

A.2.1. Future-Time Temporal Logic Operators ... 181

A.2.2. Example of Future-Time Assertions .. 181

A.3. All-Time Assertions .. 182

A.3.1. All-Time Temporal Logic Operators ... 182

A.3.2. Example of All-Time Assertions ... 182

xiii

Appendix B: Evaluation and Performance ..183

B.1. Experimental Programs ... 183

B.2. Experimental Modes .. 184

B.3. Monitored Events... 184

B.4. Average Monitored Events (E_Deref, E_Line, E_Syntax, E_Pcall) 192

Appendix C: UDB Command Summary ..194

C.1. Essential Commands .. 194

C.2. What to Do after a Crash ... 194

C.3. Starting UDB ... 194

C.4. Stopping UDB ... 195

C.5. Getting Help ... 195

C.6. Executing a Program.. 195

C.7. Breakpoints .. 195

C.8. Watchpoints ... 196

C.9. Tracepoints .. 198

C.10. Program Stack .. 200

C.11. Execution Control .. 200

C.12. Display and Change Data .. 200

C.13. Source Files and Code Info ... 201

C.14. Memory Usage... 202

C.15. Shell Commands .. 203

C.16. Extension Agents ... 203

C.17. Temporal Assertions .. 203

Bibliography ..205

xiv

List of Figures

Figure 1.1. Dissertation’s Contributions .. 5

Figure 1.2. Dissertation Outline ... 12

Figure 2.1. Sample Semantic Bug .. 14

Figure 2.2. Debugging Techniques .. 24

Figure 3.1. Manual Debugging Tools and Techniques .. 27

Figure 3.2. An Example of Debugging Macros in C++ ... 28

Figure 4.1. Automatic Debugging Tools and Techniques .. 41

Figure 5.1. Alamo’s Architecture ... 57

Figure 5.2. Sample Alamo Monitor .. 61

Figure 6.1. Trapped Variable Implementation ... 65

Figure 6.2. Sample expression where assignment can be violated ... 66

Figure 6.3. The New Data Structure Introduced for the Trapped Variable .. 66

Figure 6.4. The Allocation Macro Introduced for Trapped Variables .. 66

Figure 6.5. Unicon's Line/Syntax/Column Table ... 67

Figure 6.6. Sample Unicon Program .. 68

Figure 6.7. Sample ucode Format Before and After the Syntax Instrumentation 69

Figure 6.8. Sample Syntax Monitor ... 70

Figure 6.9. Sample Stack Trace .. 72

Figure 6.10. Sample Procedure that Backtraces the Current Stack .. 73

Figure 6.11. Sample Monitor Program Using the E_Signal Event ... 74

Figure 7.1. Sample AlamoDE Debugging Loop .. 77

Figure 7.2. AlamoDE’s Architecture .. 78

Figure 7.3. Sample Monitor Using the event mask and value mask ... 79

Figure 7.4. Assigning Variables in the Buggy Program ... 80

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565306
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565307
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565308
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565309
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565310
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565311
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565312
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565313
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565314
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565315
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565316
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565317
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565318
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565319
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565320
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565321
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565322
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565323
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565324
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565325
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565326
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565327
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565328
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565329

xv

Figure 7.5. Modifying Procedures in the Buggy Program ... 80

Figure 7.6. AlamoDE Debugging Capabilities ... 82

Figure 7.7. An AlamoDE Debugging Agent .. 83

Figure 8.1. IDEA's Architecture ... 87

Figure 8.2. IDEA's UML Diagram ... 88

Figure 8.3. An IDEA-based Agent Prototype... 90

Figure 8.4. IDEA’s on-the-fly Extensions (External Agents)... 91

Figure 8.5. IDEA’s Internal Extensions (Internal Agents) ... 92

Figure 8.6. Sample Migrated Agent ... 94

Figure 8.7. Explicit Agent Registration .. 95

Figure 9.1. Sample UDB Debugging Session .. 98

Figure 9.2. UDB’s Debugging Architecture ... 99

Figure 9.3. UDB's UML Diagram .. 100

Figure 9.4. UDB’s Main Debugging Loop ... 105

Figure 9.5. UDB’s Implementation for Breakpoints .. 106

Figure 9.6. UDB’s Implementation for Watchpoints Check .. 108

Figure 9.7. Initiating a Next Command .. 112

Figure 9.8. Implementing Next within the Evaluator ... 112

Figure 10.1. UDB's on-the-fly Visual Extensibility ... 117

Figure 11.1. A DT Assertion over Two Live Procedures ... 124

Figure 11.2. A DT Assertion over Two Sibling Functions .. 125

Figure 11.3. Sample Factorial Program Written in Unicon .. 127

Figure 11.4. Sample UDB Session that Uses DT Assertions ... 127

Figure 11.5. Using Temporal Assertions to Check Loop Invariant .. 129

Figure 11.6. Using Temporal Assertions to Validate Infinite Loops ... 130

Figure 11.7. Using Temporal Assertions to Check Variables from Various Scopes.......................... 131

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565330
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565331
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565332
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565333
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565334
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565335
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565336
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565337
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565338
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565339
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565340
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565341
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565342
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565343
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565344
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565345
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565346
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565347
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565348
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565349
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565350
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565351
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565352
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565353
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565354
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565355

xvi

Figure 11.8. Temporal Assertions: Scope & Interval ... 133

Figure 11.9. Temporal Assertions Evaluation .. 134

Figure 11.10. Sample Temporal Assertion’s Evaluation .. 135

Figure 11.11. Sample Evaluation of Various Temporal Assertions ... 135

Figure 11.12. Sample of Different DT Assertions .. 138

Figure 11.13. UDB’s Temporal Assertions Syntax .. 140

Figure 11.14. UDB’s Temporal Assertions UML Diagram ... 144

Figure 12.1. Execution Time- Standalone vs. Monitored Mode .. 149

Figure 12.2. E_Deref, E_Line, E_Syntax, & E_Pcall Events Ratio to all Other Events 152

Figure 12.3. The Percentage Increase in the Size of the Object Code File .. 153

Figure 12.4. The Percentage Increase in the Size of the Executable Program 153

Figure 12.5. The Percentage Increase in Compile/Link Times .. 154

Figure 12.6. Time of Procedure Calls vs. Context Switches .. 155

Figure 12.7. Sample Unicon Program Measures Procedure Calls vs. Co-Expression 156

Figure 12.8. IDEA’s Use of Debugging Agents ... 159

Figure 12.9. Sample Agent Counter ... 161

Figure 12.10. The Average Time for the Experimental Agent in Seconds .. 163

Figure 12.11. IDEA's Extension Techniques ... 164

Figure 12.12. IDEA’s Extension Agents vs. Standalone Mode ... 164

Figure 12.13. The Performance of UDB's Various Debugging Features ... 166

Figure 12.14. State Based vs. Interval Based Evaluation ... 168

Figure 12.15. Sample Unicon Program Used to Measure Time of Temporal Assertions 168

Figure 12.16. Temporal Assertions Evaluation Time... 169

Figure 13.1. Dissertation Contributions ... 173

Figure B.1. rsg Average Execution Time .. 185

Figure B.2. rsg Reported Events .. 185

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565356
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565357
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565358
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565359
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565360
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565361
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565362
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565363
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565364
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565365
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565366
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565367
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565368
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565369
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565370
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565371
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565372
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565373
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565374
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565375
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565376
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565377
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565378
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565379
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565380
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565381

xvii

Figure B.3. genqueen Average Execution Time .. 186

Figure B.4. genqueen Reported Events .. 186

Figure B.5. scramble Average Execution Time .. 187

Figure B.6. scramble Reported Events ... 187

Figure B.7. ichartp Average Execution Time .. 188

Figure B.8. ichartp Reported Events ... 188

Figure B.9. igrep Average Execution Time ... 189

Figure B.10. igrep Reported Events ... 189

Figure B.11. miu Average Execution Time ... 190

Figure B.12. miu Reported Events ... 190

Figure B.13. pargen Average Execution Time ... 191

Figure B.14. pargen Reported Events ... 191

Figure B.15. Average Time of all Events ... 193

Figure B.16. Average of E_Deref, E_Pcall, E_Line, and E_Syntax Events 193

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565382
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565383
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565384
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565385
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565386
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565387
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565388
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565389
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565390
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565391
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565392
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565393
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565394
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565395

xviii

List of Tables

Table 3.1. Manual Debugging Tools and Techniques .. 40

Table 4.1. Automatic Debugging Tools and Techniques ... 54

Table 6.1. Syntax Events and Codes .. 68

Table 6.2. Unicon's Debugging Related Keywords .. 71

Table 9.1. UDB's Default Monitor Events ... 103

Table 9.2. UDB's Tracepoints .. 111

Table 10.1. Atomic Data Related Agents ... 120

Table 10.2. Execution Behavior Related Agents .. 121

Table 11.1. UDB’s DT Assertions Evaluation Action Operators ... 136

Table 11.2. UDB’s DT Assertions Evaluation Log .. 138

Table 11.3. UDB’s DT Assertions Evaluation Log .. 139

Table 11.4. DTA Temporal Logic Operators ... 139

Table 12.1. AlamoDE No Mask vs. Event Mask vs. Value Mask ... 148

Table 12.2. Syntax Instrumentation Effects on Object-Code (ucode) Formats 153

Table 12.3. Syntax Instrumentation Effects on Executable (bytecode) Formats 153

Table 12.4. Syntax Instrumentation Effects on Compiling/Linking Time ... 154

Table 12.5. Performance of IDEA’s Extension Agents .. 162

Table 12.6. The Time of Different UDB Debugging Features ... 165

Table 12.7. Evaluation Time of Temporal Assertions .. 169

Table B.1. rsg Execution Time .. 185

Table B.2. genqueen Execution Time .. 186

Table B.3. scramble Execution Time ... 187

Table B.4. ichartp Execution Time .. 188

Table B.5. igrep Execution Time ... 189

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565398
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565400
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565401
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565402
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565403
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565404
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565405
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565406
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565407
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565408
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565409
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565410
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565411
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565412
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565413
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565414
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565415
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565416
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565417
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565418
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565419

xix

Table B.6. miu Execution Time ... 190

Table B.7. pargen Execution Time ... 191

Table B.8. The Average Monitoring Time of All Events ... 192

Table B.9. Number of Reported Events ... 192

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565420
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565421
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565422
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565423

xx

List of Equations

Equation 12.1. Number of Context Switches (E Events Reported to n Agents) 157

Equation 12.2. Cost of Forwarding an Event to n Agents using Context Switches 157

Equation 12.3. Total Cost of Forwarding E Events to n Agents using Context Switches 157

Equation 12.4. Cost of Reporting an Event to an Agent in Standalone Mode 158

Equation 12.5. Total Cost of Reporting an Event to n Agents in Standalone Mode 158

Equation 12.6. The Cost of Reporting an Event to n Agents Using Procedure Calls 158

file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565424
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565425
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565426
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565427
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565428
file:///C:/Users/zsharif/Desktop/Presentations/phd_dissertation.docx%23_Toc248565429

1

Part I

Introduction and Background

2

Chapter 1

Introduction and Objectives

The growth in the software industry is rapid and the size of programs is becoming larger and

larger. In contrast, the rate of advances in the debugging literature is relatively slow. Most debuggers

are well suited for a specific class or set of bugs. Program bugs can be caused by numerous

circumstances and revealed long after their root cause. Understanding the source code and the

execution behavior of the program is essential to locate and find the cause of most bugs. This

understanding can be achieved by different means; one is to employ different debugging tools that

capture, depict, analyze, and investigate the state of the program at, and in between, different points

of execution. In practice, a programmer often tries more than one debugging tool on the same bug

before it is caught.

1.1. Dissertation Scope

Various debugging tools and techniques are available. They range from reviewing the source

code and utilizing print statements to using special purpose bug detectors. The research in this

dissertation is focused on two kinds of debuggers and their extensibility. First is the typical interactive

source-level debugger, which is one of the most valuable debugging tools, but it relies heavily on the

user’s ability to conduct a live test. It helps programmers locate and find bugs by stepping through the

source code and examining the current state of execution. It provides techniques such as breakpoints,

watchpoints, single stepping and continuing, and navigating the call stack. Such techniques are good,

but they are not always successful in enabling the programmer to locate or to understand the cause of

a bug. For instance, a class variable may be assigned a bad value in a method that is not on the stack

when a bug that causes a crash or a core dump is revealed. A user can investigate the current state. If

there is no evidence of the bug’s root cause, he/she may restart the execution hoping to stop at an

earlier point where the cause of the bug is still accessible [1]. These source-level debuggers suffer

from various limitations such as:

1. Limited information provided about the execution history

2. Lack of automated and dynamic analysis-based debugging techniques

3. Limited features that are restricted to the commands prescribed in the debugger’s manual

4. Closed architecture that provides little or no cooperation with external debugging tools.

3

Second are the post-mortem reversible debuggers (also known as trace-based debuggers), which

provide debugging techniques based on the ability to browse forward and backward through the states

of a completed execution. This approach provides outstanding debugging capabilities such as finding

where and why some action has happened. For instance, if the buggy program produces an incorrect

result, it is possible for the programmer to step backwards on the faulty output and find the improper

value at each point until the root cause of the bug is revealed. On the contrary, if the program fails to

produce the output, then the programmer has no handle on the bug to trace backwards. Most of these

trace-based debuggers incur serious limitations such as:

1. A post-mortem debugging process that requires the ability to trace the completed execution

state before they allow a user to investigate

2. Formidable scalability problems that are induced by the huge volume of trace data

3. Good at finding some types of bugs and not others

4. Neglect common debugging techniques such as altering the state of the program being

debugged. A debugging process may include modifying the state of the buggy program in

order to test ―what if” kind of hypotheses.

1.2. Context and Motivation

The research presented in this dissertation targets the Unicon programming language [3, 4].

Unicon is an object-oriented dialect of Icon [6, 7], a very high level imperative programming

language with dynamic and polymorphic structure types, along with generators and goal-directed

evaluation.

This dissertation is motivated by two objectives. First, historically, the Icon language community

had no formal debugging tool, only a built-in trace facility. A rationale for this was that the very high

level nature of Icon reduces the need for conventional debugging because Icon programs are shorter

than they are in conventional languages. However, Unicon programs are often much larger than was

common for Icon. Even in a very high level programming language, programmers write bugs and the

debugging process is still difficult and time consuming. Also, very high level languages’ advanced

features may introduce special kinds of bugs and create special needs for debugging tools and

techniques.

Furthermore, the cost of writing debugging tools is typically very high, which plays a significant

role in the slow rate of improvement seen in the debugging literature. This motivates the second

objective, which is to build underlying debugging facilities that simplify and reduce the cost of

4

writing debugging tools. Such infrastructure should permit easy experimentation with new debugging

techniques that might become standard features in future debuggers. These two objectives take

advantage of the Alamo framework, an event-driven monitoring framework developed originally to

support visualization of Icon and Unicon program behavior. For this dissertation, Alamo has been

extended with new features to enable debugging support. The result of these extensions is called

AlamoDE.

1.3. The Problem

Different programmers and bugs require different debugging techniques. Often, bugs are

revealed long after their root cause. Whenever a bug is discovered, a programmer tries to find a

debugging tool or technique that suits its revealed behavior. However, often a debugger becomes

useless when a situation arises that is not supported by its commands. At the same time, it is not

feasible to provide all debugging techniques in one tool.

Sometimes, it is useful to utilize various debugging tools on the same bug and compare their

outcome in order to better understand a bug’s root cause. In these situations, working synchronously

with more than one debugging tool on the same bug can speed up the debugging process. Instead of

operating different debugging tools side by side, the programmer may benefit from running them all

within the same session, allowing simpler interactions and collaborations between the tools. This

capability has potential value, but requires underlying support for various debugging tools and

techniques to work in concert with each other, which may entail extending a debugging tool with new

techniques or integrating the features of one debugging tool into another. This extensibility may result

in better debugging tools and reduce the user’s search for various techniques. However, this

extensibility is rarely supported. When it is applicable, it is difficult and time consuming. It requires

sufficient knowledge and high level programming skills.

A solution to this problem can be reached by two levels of support. First, there is a need to

simplify the process of developing new debugging tools and techniques, which may aim at improving

the value of an existing tool by developing and integrating new techniques, or derive the innovations

for new debugging mechanisms. Second, there is a need to simplify the extensibility of various

debugging tools and techniques.

5

1.4. The Solution Approach Used in This Research

Simplifying the experimentation is essential for advances in future debuggers. The research

conducted in this dissertation is focused on advancing the debugging state of the art by facilitating the

extensibility of a typical interactive source-level debugger with custom-defined trace-based

debugging and dynamic analysis techniques, which aim at improving its conventional debugging

process.

The approach provides a debugging suite that consists of four primary contributions; see

Figure 1.1. First, it provides an underlying high level virtual machine support for various debugging

tools. Second, it presents a debugging extension architecture that simplifies the process of extending a

source-level debugger with new debugging features, called agents. Third, it introduces a production

Figure 1.1. Dissertation’s Contributions

AlamoDE: An Event-Based Debugging Framework
Language Support for

Event-Based Debugging

High Level
Programming

 Language

IDEA: The Idaho

Debugging Extension Architecture UDB: Unicon’s

Source-Level

Debugger

Internal

Agents

External

Agents Migrate
Temporal

Assertions’

Agents

Standalone Automatic Debugging,

Dynamic Analysis and Visualization Tools

1

3

U
se

d

2 4

6

grade source-level debugger, named UDB, which utilizes both of the high level debugging support

and the extension architecture. Finally, it provides a set of experimental extensions. These extensions

introduce temporal assertions for the first time in a typical interactive debugger that debugs sequential

programs. These four contributions are introduced in the following four sub-sections and discussed in

detail through this dissertation.

1.4.1. Debugging Framework

The first contribution of this dissertation is an event-based debugging framework named

AlamoDE (Alamo—Debug Enabled), see Chapters 5-7. This framework provides a high level

abstraction mechanism that reduces the cost of writing a variety of debugging tools—including

source-level debuggers and custom-defined debugging tools. This simplifies and speeds up the

process of experimenting with new debugging techniques such as automatic debugging, dynamic

analysis, and visualization tools. It encapsulates goals that include:

1. Reduce the development cost of debugging tools

2. Facilitate all the usual capabilities of classical debuggers

3. Support the creation of advanced debugging features such as automatic debugging, and

dynamic analysis techniques

4. Debug novel language features such as generators, goal-directed evaluation, and string

scanning

5. Support for runtime information sharing between various debugging tools through execution

events

AlamoDE is general enough to support different kinds of debugging tools that range from

classical source-level debuggers to automatic and dynamic analysis tools. It is a debugging

framework that adds to the original Alamo framework:

1. Debugging-oriented virtual machine instrumentation

2. Additional execution state inspection and source code navigation

3. The ability for debugging tools to safely change the execution state of the buggy program by

assigning to its variables and procedures.

7

1.4.2. Extension Architecture

The second contribution of this dissertation is an agent-oriented debugging extension

architecture named IDEA (Idaho Debugging Extension Architecture), see Chapter 8. IDEA sits on top

of AlamoDE to further elevate the debugging support through its novel extension mechanism. It

simplifies and speeds up the process of experimenting with new AlamoDE-based debugging

techniques and visualization tools within a typical interactive debugging session. Experiments are

plugged in to the debugger allowing various debugging tools and techniques to work in concert with

each other on the same buggy program. Different tools work and hunt for the root cause of a bug

simultaneously and under the extended debugging session.

IDEA’ extensibility allows different debugging tools to be written and tested as standalone tools

and then loaded into a debugger without modification. These debugging tools play the role of agents

in a source-level debugger. IDEA supports two types of extensions that distinguish it from other

architectures:

1. Dynamic extension on the fly during the debugging session (external agents). This facilitates

on the fly debugging extensions and cooperation between various debugging tools

2. Formal steps for migrating and adopting standalone agents as permanent debugging features

(internal agents).

IDEA’s extensions are in-process debugging agents that are used simultaneously through a

mixture of co-expression context switches, inter-program procedure calls, and in-program procedure

calls. Those agents are event-driven task-oriented program execution monitors. Each agent monitors a

program’s execution for custom runtime events; an event is an action during the execution of the

program such as a method being called or a major syntax construct being entered. An agent may

employ events, event-sequences, and event-patterns to detect specific execution behaviors. Different

agents perform different debugging missions such as detecting a suspicious execution behavior,

performing an automatic debugging procedure, or executing a dynamic analysis technique. Each

agent receives different runtime events based on its request. IDEA’s central debugging core

coordinates all agents. Each agent:

1. Provides the debugging core with its set of desired events

2. Receives relevant events from the debugging core

3. Performs its debugging mission, which may utilize execution history prior to the current

execution state, and

8

4. Presents its analysis results back to the debugging core, another agent, or directly to the end-

user. The external debugging agents’ standard inputs and outputs are redirected and

coordinated by IDEA’s debugging core.

1.4.3. Very High Level Debugger

The third contribution of this dissertation is a production source-level debugger for the Unicon

[3, 4] programming language named UDB, see Chapter 9. UDB is built on top of AlamoDE

framework and utilizes the IDEA architecture. It validates this framework and proves the usefulness

of the extension architecture. It combines the capabilities of classical and trace-based debuggers and

provides a friendly experimentation environment for various debugging tools and techniques to work

in concert with each other. UDB is not limited to classical debugging techniques such as those found

in GDB [5]. Extensions can use advanced debugging techniques, such as agents that implement

automatic debugging or dynamic analysis techniques that may utilize information prior to the current

execution state. Any number of external and internal debugging agents can synchronously assist in

locating bugs. UDB suspends all agents whenever a breakpoint or watchpoint is reached, and it

resumes them whenever the buggy program is resumed.

Unlike common dynamic analysis tools that have to be linked in advance into the source code of

the buggy program, or initialized at the start of the host debugger, UDB’s agents can be loaded and

managed on the fly during a typical source-level debugging session. The user does not need to restart

the debugging session whenever a decision is made to incorporate any of these agents, unless the

agent requires information about previously executed properties. Agents that are loaded in the middle

of a debugging session are not able to analyze execution properties prior to their loading point.

UDB’s extension agents are written and tested as standalone tools, and then incorporated into the

debugger via dynamic loading or linked into the debugger executable with almost no source code

alterations. Since UDB’s extension agents are programmable in the same target language, UDB

enables experienced users to write and test their own debugging tools as standalone programs and

then use them as externals, or incorporate them as internals—built-in debugging features.

Furthermore, UDB’s interactive user interface resembles GDB’s interface. This provides familiarity

and ease of use for programmers who switch between languages frequently. UDB adds a handful of

simple but general commands to load, unload, enable, and disable its extension agents. This simplifies

the extensibility especially for typical users and novice programmers who may want to benefit from

existing agents.

9

1.4.4. Extension Agents

The final contribution of this dissertation is a set of extension agents that validates the

extensibility and the usefulness of the IDEA architecture. These extensions are used within UDB’s

interactive debugging session, see Chapter 10. The set of extension agents is divided into

1) language dependent agents, 2) language independent agents, and 3) temporal logic operators. The

agents of temporal logic operators are used to provide Dynamic Temporal Assertions (DTA), see

Chapter 11. These DTA’s are logical expressions used to validate relationships (a sequence of

execution states) that may extend over the entire execution and check information beyond the current

state of evaluation. The temporal logic operators are internal agents used within the IDEA

architecture. Those agents can reference other atomic agents. This collaboration between agents can

provide a helpful debugging technique and prove the value of the IDEA architecture.

1.5. The Results

An AlamoDE-based debugging tool must use different approaches to implement features found

in similar standard debugging tools, and faces potential performance challenges. In compensation,

this type of implementation greatly simplifies the process of experimenting with new debugging

techniques that probably would not be undertaken if the implementation was limited to the low level

approaches found in other debuggers. This dissertation tests the following hypotheses:

1. The AlamoDE event-based debugging framework is sufficient to support various debugging

tools and techniques, including typical source-level debugging functionalities, with sufficient

performance for production use.

2. AlamoDE’s in-process debugging support allows for efficient and complex communication

patterns between the debugger and the buggy program. These communications are facilitated

by a mixture of event monitoring and high level primitives.

3. An AlamoDE source-level debugger can surpass ordinary debuggers with more debugging

capabilities.

4. AlamoDE enables low-cost development of debugging tools, and the IDEA architecture

allows AlamoDE tools to be extended easily. AlamoDE-based debugging tools are written in a

high level language with no low level or hardware specific code.

5. IDEA simplifies a typical source-level debugger’s extensibility with on the fly agents that

utilize automatic debugging and dynamic analysis techniques. These extensions require no

10

special compilation, no source code or object modification, and no pre-initialization or any

knowledge of the host debugger internal implementation.

Also, this AlamoDE debugging framework and the IDEA extension architecture, both simplify

the process of experimenting with new custom-defined debugging tools and techniques. This

experimentation includes:

1. Improvement to traditional techniques such as watchpoints and tracepoints

2. The ability to integrate verification and validation techniques such as dynamic temporal

assertions

3. The simplicity to develop, test, and integrate new techniques of debugging agents.

1.6. Definitions

A number of terms and phrases used throughout this dissertation require some explanation. The

terms monitor and monitor program denote a program that performs execution monitoring on another

program. In this dissertation, these terms represent a debugger or a debugging tool. The terms

monitored, monitored program, subject program, target program, and buggy program all represent

the program being monitored and debugged. The term agent represents ―a program that performs

some information gathering or processing task in the background. Typically, an agent is given a very

small and well-defined task‖ [118]. A debugging agent is a special agent that performs an event-

driven task-oriented program execution monitor. The term monitoring framework represents the

underlying support and the public API for event-based execution monitoring. The term debugging

framework represents the underlying support and the public API for event-based debugging; some

runtime events are used to control the execution of the buggy program while others are used to obtain

information about its execution state. This framework allows programmers to write a variety of

debugging tools in a very high level language. Finally, the term debugging architecture represents the

structural design of a debugging tool, such as a source-level debugger.

1.7. Dissertation Outline

This dissertation consists of five major parts. Part I gives research background and investigates

various debugging tools and techniques. Chapter 2 gives a general introduction to the field of

debugging. Chapters 3 and 4 present a debugging literature survey, where different manual and

automatic debugging tools and techniques are discussed in terms of their features, pros, and cons.

11

Part II presents a detailed discussion of the dissertation’s first major contribution named

AlamoDE; an event-based debugging framework. Chapter 5 presents the Alamo monitoring

framework that was originally designed to support software visualization [106,107,108]. Alamo is the

related work that constitutes the starting point for this dissertation. This chapter only presents

Alamo’s features that are adequate for debugging needs. Chapter 6 presents extensions to the Alamo

framework developed for this dissertation in order to support debugging. It describes the

implementation of these extensions within Unicon’s virtual machine and its runtime system in order

to facilitate high level debugging support. Chapter 7 presents AlamoDE, a debugging framework that

features event-driven debugging support integrated within a high level programming language. This

chapter covers existing features from the Unicon language and the Alamo framework along with new

extensions. The combination provides very high level debugging support, which enables

programmers to develop new debugging tools and techniques in less effort and time.

Part III presents a very high level extension mechanism. Chapter 8 introduces the IDEA

architecture, which enables API compliant debugging tools to be loaded under the control of a source-

level debugger. Chapter 9 discusses the design and implementation of UDB and its built-in debugging

techniques. UDB is an event-driven source-level debugger with exceptional extensibility.

Part IV presents extension agents. Chapter 10 discusses various kinds of agents used in UDB

under its IDEA architecture support. Chapter 11 introduces UDB’s Dynamic Temporal Assertions

(DTA). DTAs are built on top of a set of predefined internal debugging agents that are integrated into

UDB using the IDEA architecture. Within UDB, this set of special agents is used implicitly through a

high level assertion language that allows users to dynamically assert execution properties across

different execution states. DTAs are inserted into the debugging session from within the UDB console

based interface.

Part V presents the results found by this dissertation. Chapter 12 provides a performance

evaluation for AlamoDE and IDEA architecture, all within the UDB source-level debugger. Chapter

13 presents the conclusion and future work.

This dissertation includes a set of appendices. Appendix A shows a summary of DT assertions

introduced in Chapter 11. Appendix B shows detailed information about the evaluation discussed in

Chapter 12. Finally, Appendix C shows a command summary for the currently implemented features

in UDB.

12

Figure 1.2. Dissertation Outline

AlamoDE: An Event-Based Debugging Framework

Virtual Machine Level

(Language Support) Chapters 5, 6, & 7

Typical Source-Level debugger + New Features + Simple Extensibility

Very High Level Language

(Programming with Unicon)

UDB:

Unicon’s

Source-Level

Debugger

Chapter 9

Standalone

Automatic Debugging,

Dynamic Analysis, and

Visualization Tools

Chapter 8

IDEA: The Idaho

Debugging Extension Architecture

Chapter 11

Internal

Agents

External

Agents
Migrate

Internal Agents

of Temporal

 Logic Operators

U
se

d

Temporal

 Assertions

Evaluator

Chapter 10

13

Chapter 2

Background

Debugging is essential for every software project; it is part of the edit-compile-link-debug

development cycle [8]. Different debugging tools are available, each of which may implement

different techniques that catch a particular kind or class of bugs. Some consider debugging an art [9],

while others consider it a systematic science [10]. In either case, debugging is an active search for the

real cause of a known bug [11] and the fixing of program faults. The debugging time depends on the

bug, the way it is observed, the employed debugging tool, and the programmer’s skill. Some studies

have found a significant positive correlation between the debugging rate and the programmer skill

[11].

Most debugging literature, old and new, consistently asserts that debugging is a hard problem,

which consumes a big percentage of the development time; this percentage often reaches over 50

percent [12]. Additionally, debugging is emotionally difficult because it is a challenging problem, and

because people dislike admitting that their program is buggy and requires debugging [9]. Kernighan

and Plauger argued that ―Everyone knows that debugging is twice as hard as writing a program in the

first place. So if you’re as clever as you can be when you write it, how will you ever debug it?‖ [13].

In contrast, some experiments found that programmers can debug their own programs faster and

easier than they would debug programs created by others. This may relate to the difference in the

debugging process; a programmer usually uses backward reasoning to debug his/her own program,

while forward reasoning is often used to debug programs written by others [11]. On the contrary,

others think that bugs are not hard to find. In this minority view, if the code is complicated enough

that it obscures the bug, then the real bug is the design; this should be enough of an excuse to redesign

and rewrite [14].

2.1. Program Bugs

A program’s source code is composed of 1) syntactic pieces defined by the programming

language in use, 2) modules and libraries defined by the design and implementation, and 3) semantics

and behaviors that are defined by the requirements and specifications. In general, a bug is a mistake

somewhere in the program’s development process; it may occur in any one or more of these

categories. However, this dissertation considers only those circumstances when the requirements,

14

specifications, and design are bug free, and the bug is always in the implementation of the program’s

source code.

First, syntax related bugs are varied based on the language grammar. Each language has a

grammar that defines what is valid and what is not. Most bugs in this category are usually a simple

omission or duplicate symbol. Since syntax bugs are defined contingently based on each language,

any violation of a language syntax rule may result in a syntax bug. The language’s compiler or

interpreter usually catches those bugs very easily.

Second, linking bugs are related to the program’s structure of modules and libraries. In order to

debug a linking bug, a programmer needs insight about the relationship between modules and

libraries, and how they are incorporated in the main program. Sometimes, the linker discovers these

bugs during the linking phase of the build process. However, some programs may utilize dynamic

linking, which may not link and validate the linked modules until they are used in the program at

runtime. Another example can be seen in some dynamic languages that do not validate the linked

modules until they are used. Either one can result in linking bugs during the execution.

Finally, in some cases the semantics of a statement is buggy or ambiguous. For example, the if

statement in Figure 2.1 is syntactically valid in the C language according to some compilers, but the

condition always fails. Furthermore, the while loop in Figure 2.1 is syntactically valid, but the

condition always fails too—perhaps the programmer intention was to write a for loop instead. Static

analysis techniques may be used to catch similar suspicious expressions during compilation, which

may warn the user about potential misuses or flag semantic errors. In general, semantic bugs are the

most difficult to define, find, and locate. They may depend on the program requirements,

specifications, design, or implementation. Usually, the program is heavily tested during the

development process to reduce the probability of these bugs during actual use in released builds.

Besides semantic bugs, this category has many names such as logical bugs, runtime bugs, or even

software bugs.

 ………

 if (x=0) { y = 1000; }
 printf("y = %d ", y);
 ……….

 while (i=0, i < 10, i++) {
 printf("i = %d ", i);
 printf("\n");
 }
 ………

Figure 2.1. Sample Semantic Bug

?

?

15

2.2. Runtime Bugs

Runtime bugs are discovered during program’s execution. They can be introduced into the

software during the: 1) initial implementation, 2) modification of an existing program feature, or 3)

repair process of an existing bug [11]. Runtime bugs can be defined by capturing the difference

between 1) the computed, observed, or measured values, and 2) the specified, correct, and

theoretically true value. Another way to define a runtime bug is by capturing 1) the inconsistency

between the base model and the target model, or 2) the inconsistency between the expected behavior

and the actual behavior [11].

Runtime bugs can be revealed as an incorrect or missing output, unexpected behavior, or as a

program crash. Software bugs can be classified in terms of reproducibility and severity. The ability to

reproduce the bug is the first step to debug it. Some bugs are reproducible deterministically while

others are not. A deterministic bug is one that is revealed every time the program executes in a

specific path; most of the time, those bugs are data dependent (input dependent) such as dereferencing

a pointer. In contrast, a non-deterministic bug does not depend on the execution path; those bugs are

harder to locate and find and are mostly related to memory corruption [15, 16]. In general,

reproducing and finding the root cause of a bug is harder than fixing it.

On the other hand, a bug’s level of severity may influence the urgency of fixing it, especially

when it is combined with a high recurrence rate. A fatal bug is one that causes the program to crash or

freeze. A non-fatal bug is one that may cause a missing or incorrect output or an unexpected behavior.

A bug may be so infrequent that the user can afford to live with it, especially if it is non-fatal. In

general, the name functional bug is given to any bug that may cause an incorrect or missing output, a

non terminated execution, or an unexpected termination that might be caused by a crash or a core

dump [17]. Often, specific execution behaviors can be checked in relation to the revealed functional

bug. For example, many programmers neglect checking function return values, and pointers are often

misused causing memory corruptions.

2.3. Debugging Terms

This appendix provides an overview of the most common terms related to debugging. Some of

these terms may indicate a category or class of debugging techniques while others may represent a

specific debugging tool. The following is in alphabetical order with a brief description for each term:

Abstract Debugging utilizes abstract interpretation to debug programs prior to their execution.

It is based on two types of assertions: 1) invariant assertions, and 2) intermittent assertions. The user

16

inserts assertions into the buggy program source code and the debugger treats any violation of those

assertions as runtime errors [37, 38]. See Section 4.2.

Algorithmic Debugging is a high level means of checking and fixing program correctness. This

process may include two algorithms: 1) a diagnosis algorithm that identifies the bug in the program

based on its incorrect behavior and 2) a bug correction algorithm that solves and fixes the already

identified bug. It may utilize different static and dynamic analysis tools [11][114].

Automatic Debugging is any debugging tool or technique that employs a computer algorithm to

either locate the cause of a bug, reduce the search space for the location of the bug, or reduce the set

of inputs that induce the bug. This category contains a variety of debugging techniques, each of which

is focused on specific kind or class of bugs [39]. See Chapter 4.

Bidirectional Debugging is a special case of reversible debugging. It reverses or undoes the

execution of parts of the buggy program. It may be achieved based on checkpoints taken

automatically in correspondence to the debugger commands. The debugger supports two types of

commands: forward and backward [1], see Section 3.3.2.

Convergence Debugging is an automatic debugging technique that utilizes a set of test cases. It

isolates different test cases based on their convergence on the root cause of the failure by analyzing

the internal control and data flow of the failure test case [29], see Section 4.3.3.1.

Declarative Debugging allows users to perform queries on the execution history and specific

execution states [40]. It is a specific kind of programmable debugging.

Delta Debugging is an automatic way of narrowing down the differences between a failure run

and a successful run [22]. It is a fully automatic debugging technique that finds the simplest test case

that generates the failure, and highlights the difference between a passing and failing test case. It

consists of two algorithms: a simplification algorithm and an isolation algorithm [21, 41], see Section

4.3.3.5.

Event-Based Debugging is used to control and obtain information from the buggy program by

means of execution events, which are activities during the execution of the target program such as

method being called or a variable being assined. It has been used mostly to debug concurrent and

parallel programs. It is also used in debugging sequential programs in debuggers such as Dalek [42,

43] and JPDA [23].

17

Goal Directed Debugging is a semi-automatic debugger for Microsoft Excel spreadsheets. It

allows end-users to report expected cell values and the debugger provides suggestions. It is up to the

user to apply, refine, or reject any of these suggestions [44].

Interactive Debugging is a debugging method that allows a user to perform live investigation of

the execution states during the debugging session; whether it is before or after the occurrence of the

bug [45].

Manual Debugging is any debugging tool or technique that depends heavily on the user’s ability

to investigate and search for the bug and its location, see Chapter 3.

Model-Based Software Debugging is the process of locating the place of defects in a program

based on models generated automatically from the source code or the execution of the program. The

generated (observed) model is compared against the intuitive or theoretical model. It is an application

of Model Based Diagnosis [46], see Section 4.3.1.

Omniscient Debugging is a post-mortem source-level class of debuggers that provide the ability

to go backward in time through the ability to navigate the execution history [47, 48, 49, 50]. See

Sections 3.3.4.1 and 3.3.4.2.

On Demand Debugging is the process of starting a debugging session right after encountering a

runtime error. The debugger can be attached to the faulty program automatically at the failure point,

saving developers’ time. A developer does not need to rerun the application and reproduce the

situation where the bug should occur again. In some situations, it is possible to fix the bug and resume

the program’s execution [51].

Performance Debugging is a class of debugging tools that targets the complexity and the

efficiency of the program. They are mostly used under the name of profilers. An example of this class

of debuggers is gprof [52].

Post-Mortem Debugging is the process of debugging that allows the user to investigate the

execution history of states after the occurrence of the bug or after the termination of the program’s

execution [37, 38].

Record-Replay Debugging provides the ability to reproduce a bug encountered at the end-user

site. Recorded information before the occurrence of the crash is sent to the developers, so they may

deterministically replay and reproduce the bug in their environment by replaying the last several

million instructions before the crash [33, 53], see Section 4.3.3.8.

18

Relative Debugging is a class of debuggers that target the process of debugging two different

versions of the same program. It allows a user to compare the execution of two programs based on

expected predefined associations. It may concurrently execute the two programs in order to verify the

similarities and find any differences [54, 55], see Section 4.3.3.7.

Reversible Debugging is a general debugging technique that provides the ability to reverse and

undo the execution of the buggy program into some previous point. In practice, this kind of

debugging encompasses many technical limitations, which may depend on the operating system and

the target machine or architecture. Often, it depends on special hardware and operating system

support [1, 56], see Section 3.3.2.

Simulation Based Debugging performs live simulation of the execution of the buggy program

[57]. It may simulate the hardware of the execution environment by means of virtualization to avoid

any modification of the host operating system [115], or provide a synthetic CPU targeting specific

predefined anomalies, which is the case in Valgrind [18, 58], see Section 4.3.3.11.

Source-Level Debugging is a class of debuggers that provide the ability to debug a program’s

execution on the level of its source code. Even though the execution is performed on the program’s

machine level representation, the debugger should be able to provide the user with information in

relation to the source code. It is also known as symbolic debugging because it provides users with

symbolic information obtained from the source code such as variables and their values [10]. See

Section 3.3.

Statistical Debugging is an automatic debugging technique for finding and locating bugs in

released software systems. It depends on collecting sparse real samples from large numbers of runs.

Sampled data is analyzed to locate and find the cause of different real world bugs [15, 16, 59, 60], see

Section 4.3.3.4.

Trace-Based Debugging is the process of debugging the program using a tracing mechanism.

The traced data can be collected by different means of instrumentation that can be as simple as print

statements or as complex as dedicated instrumentation frameworks [61, 62], see Section 3.3.4.

Visual Debugging is a class of debugging tools that includes visualization and animation for the

sake of debugging. Visualization can be used to provide better understanding of complex results

provided by the debugger such as a huge amount of traced data [63].

19

2.4. Debugging Tools

A debugging tool is any tool that is used to assist the user during the debugging process. Those

tools include:

1. Static analysis tools that check the buggy program source code for potential bugs

2. Debugging libraries that are linked into the buggy program to perform some dynamic analysis

checking, such as memory leak detection

3. Tracers that specifically focus on a specific execution behavior such as a function call or a

variable state

4. Profilers that target the performance of an execution

5. Interactive and post-mortem source-level debuggers that provide users with the ability to

investigate the execution state of the buggy program

6. Algorithmic and automatic debugging tools that target the program’s source code, its

execution behavior, or its execution model.

Dynamic debugging tools may change the behavior of the buggy program. This may be

intentional, for example when a programmer changes a value in a debugger to see what will happen,

or it may be unintentional. In practice, a runtime bug (especially non-deterministic bugs) may behave

differently before and after the debugging tool is involved. Generally, debugging tools intrude on the

buggy program space as a result of sharing resources such as memory; these effects are minimized in

order to preserve the reproducibility of bugs.

Some debugging tools are built as extensions on top of another debugger or debugging

architecture. Rob Law [11] classified debugging tools in terms of generations in an analogy similar to

the classification of programming languages:

1. First generation: low-level debugging tools used to monitor and obtain information about the

CPU and its registers and memory. The main drawback of this generation is that the debugger

provides little or no resemblance between the source program and the memory instructions.

This reduces their usability.

2. Second generation: source-level debuggers that provide information in terms of program’s

source code and the programming language in use. The user can use breakpoints and

watchpoints to control the execution of the buggy program.

20

3. Third generation: debuggers that provide information beyond the correlation of execution to

the source code. A debugger of this generation can make analysis and logical assumptions

about the location and the root cause of the bug. This generation includes tools that may

implement static and/or dynamic analysis techniques such as program-slicing algorithms.

4. Fourth generation: knowledge-based debugging and intelligent tutoring systems that apply

analysis techniques to identify and repair a bug.

This classification provides little or no information about the implementation, advantages,

disadvantages, usability, and the kind of analysis in use. A new classification based on the

architecture of the debugging process is introduced in Section 2.9. Furthermore, Chapters 3 and 4

present a classification for manual and automatic debugging tools and techniques.

2.4.1. Architecture

The form of communication between a debugging tool and its buggy program may impact the

debugging process and limit the capabilities of the utilized debugging techniques. Some debugging

tools facilitate their communications through an in-process scheme, while others depend on an inter-

process architecture. Each communication method has its own advantages and disadvantages. In

particular, debugging tools with in-process communication may intrude on the buggy program space

and change the bug behavior. This intrusion may add to the difficulty of the debugging process.

However, in-process communication simplifies the implementation of complex interactions between

the debugging tool and the buggy program. For example, often in-process debugging architectures

provide a debugging tool with direct access to the space of the buggy program that may exclude or

reduce the operating system overhead and its implications.

In contrast, pipes, sockets, or even network protocols are used to facilitate inter-process

communication between a debugging tool and its buggy program, or a debugging tool front-end and

its backend. For example, DDD is a front-end debugger for GDB, DBX, and other console-based

debuggers. DDD communicates with the underlying debugger through bidirectional pipes; see

Section 3.3.1.7. As another example, the Java Debug Interface (JDI) can communicate with the Java

Virtual Machine Tool Interface (JVM TI) using sockets, pipes, or shared memory. Usually, inter-

process communication reduces the buggy program intrusion problem. At the same time, it may

introduce another layer of overhead, which may add to the debugging time through its delay on the

various interactions during the debugging process. In general, the goals and features of a debugging

tool justify its architectural design. For example, inter-process architectures are very important to

facilitate remote debugging techniques.

21

2.4.2. Implementation

Current debuggers implement one of three mechanisms for controlling and obtaining debugging

information from a buggy program. First, trapped instructions are one of the oldest and most

successful techniques found in classical debuggers such as GDB. This trapped instruction mechanism

is an efficient breakpoint technique for interactive debugging sessions, but inefficient for conditional

or automatic debugging techniques. This means it is efficient as long as the number of trapped

instructions is infrequent enough that it does not delay the execution of the buggy program

noticeably. This potential performance problem can be seen in GDB in many debugging scenarios

[1], see Section 3.3.1.

Second, event-based debugging is one of the most efficient debugging mechanisms for

redundant programs that run on different processors in parallel. Most of the time, events are

lightweight and easily transferred between different processes as messages or signals. This

mechanism is adopted by the Java Platform Debugging Architecture (JPDA) [23] for debugging

multi-threaded and sequential programs. JPDA is based on execution events that transfer between

different processes through pipes, sockets, or even network protocols; the debugging tool and the

buggy program are in different processes. Most of the time, JPDA’s events are hidden under a high

level API of primitives and methods. In contrast, the AlamoDE debugging framework, presented in

this dissertation, transfers lightweight events between in-process threads called co-expressions, see

Chapters 5-7. Furthermore, AlamoDE-based debugging tools employ events directly without dealing

with extra wrapper functions.

Finally, different algorithmic and automatic debugging tools utilize various algorithms and

automated techniques to reduce the human factor and speed up the debugging process. Some

automatic debugging tools use static analysis techniques that are applied on the program source code

to find potential runtime faults such as static slicing. Others operate on a subset of test cases such as

Delta debugging presented in Section 4.3.3.5, or a specific dynamic analysis technique such as

Valgrind presented in Section 4.3.3.11.

2.4.3. Interface

Debugging tools vary in their user interface and in the amount and form of information that each

provides about the buggy program and its bug. Some tools are interactive and allow live investigation

in the execution state, while others are post-mortem and provide execution history navigation

mechanisms. Recently, a new debugging interface paradigm emerged that employs natural language

questioning during an interactive investigation process. This new debugging interface allows a user to

22

provide the debugger with questions about the execution of the buggy program, such as why did? and

why did not?. This new interface is introduced in a debugger called Whyline [24, 25]. Whyline has

two different implementations: the first targets the Alice framework [26] and the other is for Java

programs [27, 28], see Section 4.3.3.9.

In general, some debugging tools provide console-based debugging with character-based

commands such as GDB. In GDB, commands are used to control and investigate the buggy program’s

execution state. In contrast, visual debugging tools provide GUI interfaces where conventional

commands are replaced with mouse pointing and clicking. For example, DDD provides a remarkable

front-end GUI-based interface for GDB; it hides GDB’s commands under GUI buttons. Furthermore,

DDD provides dynamic visual data structure representation and a navigation mechanism; see Section

3.3.1.7. Other debuggers provide query-based debugging either from a GUI-based or console-based

interface. For example, Coca provides a Prolog-based query interface from a console, see Section

4.3.3.10. In contrast, Omniscient debuggers such as ODB and TOD provide GUI-based queries.

Moreover, some debuggers are integrated within IDEs, which may simplify the edit-compile-link-run-

debug cycle. Another set of debuggers employ a programming approach, allowing the user to write

and provide the debugger with some code that may or may not share the syntax and semantics of the

target language. See Acid in Section 3.3.3.2 for an example.

Often, GUI-based interfaces simplify some of the tedious interactions needed by the console-

based debuggers. For example, GUIs can provide multiple windows within the same screen. This

permits the possibility of simultaneously presenting more debugging information such as the call

stack, variable states, and source code. More information about the buggy program may simplify the

debugging process, especially when it is combined with a convenient navigation mechanism.

However, GUI has little benefit when it comes to controlling the process of the buggy program [2].

2.5. Debugging Process

Always questioning the nature of the bug leads to debugging hypotheses. Almost every

debugging process starts with a set of hypotheses, which may include the conditions under which the

bug is revealed, the bug location, the root cause, the expected behavior, the observed behavior, and

how to modify the program in order to fix it [10]. Every hypothesis is validated or refuted by the

debugging process, which may employ different debuggers and debugging techniques. The debugging

process is an iterative process of verifying, modifying, and changing the set of hypotheses until the

bug is fixed [10]. It is important to know that a debugging process is different from the process of

finding bugs, which may include testing and verification.

23

Usually, bugs are revealed long after their failure’s root causes [20]. The debugging process may

isolate the bug’s root cause that produced the failure through understanding the conditions under

which the bug occurs. This may include 1) utilizing in-code language features such as print

statements and assertions, 2) employing an analysis tool whether it is static, dynamic, or a

combination, 3) stepping through the execution with a source-level debugger, or 4) using an

automatic debugging tool that may be able to identify the cause or the location of the bug, or at least

reduce its search space [29]. See Section 2.4.1.

The debugging process requires experience because bugs are defined based on a combination of

different factors such as the program implementation, its running environment, and its design

requirements and specifications. Those factors are specific to that particular program and its revealed

bug, limiting any generalization that can be made. The debugging process can be seen as a hunting

strategy that includes five major categories [11] defined by the level of the program understanding

and the debugging context:

1. Preliminary investigation is the first step, which is used to ensure that the bug is somewhere in

the source code and not in the environment such as the hardware or the operating system. This

step may include reviewing user comments, collecting bug reports, and performing

preliminary testing.

2. Static debugging that includes reviewing the requirements, the design, and the source code.

3. Runtime observation of the program’s behaviors as a whole. This may include testing and

analyzing inputs, processing steps, and outputs.

4. In-code debugging through print statements and assertions to verify the program’s execution

flow of control and validate some critical expression evaluations.

5. Dynamic debugging using a dedicated debugging tool such as a source-level debugger that

allows the insertion of breakpoints, single stepping, and execution state investigation.

2.6. Debugging Process Architecture

This section presents a new look at a wide range of different debugging tools and techniques,

some of which are research prototypes while others are real industrial and open source projects. The

result is a taxonomy that mingles different debugging ideas, techniques, and tools, in one place. The

classification is presented based on general properties such as pros, cons, techniques, and

implementations. It emphasizes the idea that debugging tools share one goal regardless of their scope,

24

which is to help a user locate the root cause of a bug. This section gives a closer look at different

debugging approaches based on their debugging process architecture.

In Figure 2.2, level one divides debugging techniques into four categories presented in the

following subsections. Whereas level 2 divides local debugging techniques into manual debugging

presented in Chapter 3 and automatic debugging presented in Chapter 4.

2.6.1. Local Debugging

The debugging process is considered local if and only if both the debugging tool and its buggy

program live on one machine and only one debugging interface is available. Having the debugging

tool and the buggy program on the same machine is not limited to the in-process communication.

Inter-process communications between the debugging tool and the buggy program is also considered

local debugging as long as they are both on the same machine and same operating system. This

category covers the vast majority of debugging tools. The next two chapters present various manual

and automatic debugging tools and techniques.

2.6.2. Remote Debugging

Remote debugging is where the debugger and buggy program run on different machines or at

least the debugger front-end is at a machine different from the one that is running the debugger

0

1

2

Figure 2.2. Debugging Techniques

25

backend and the buggy program. This debugging technique is beneficial in some circumstances where

the environment affects, and in some cases alters, the debugging situation. For example, the user can

be sitting at a machine that runs the Linux operating system, but the bug occurs only when the

program runs on Windows or vice versa. In this situation, the debugger can be running on the user’s

machine and the target program is running on a remote machine. Remote debugging is useful when

the target machine or operating system is not directly accessible to the user who is debugging the

program. Common Integrated Development Environments (IDEs) such as Microsoft Visual Studio

(MSVS) and Eclipse provide support for remote debugging.

2.6.3. Collaborative Debugging

Large scale programs are hard to manage and debug by one person. Different developers may

collaboratively share the process of debugging by dividing known bugs among themselves, where

each one works on specific set of bugs, in different sections of the code, independently. This approach

is inefficient and it can be misleading, especially when some bugs affect other bugs; this means

developers may end up repeating work or overlapping with each other’s work. Another collaborative

approach is for developers to work cooperatively on the same bug at the same time (by gathering

around one screen). This may be inconvenient for some developers for different reasons such as the

available space, environment, distance, and differences in reasoning or technique.

A tool that allows different users to collaborate with each other regardless of their location

would improve and speed up the debugging process. One of the first collaborative debugging tools

over distance locations was web based; the buggy program is posted on a specific website where

other developers can look it up and try to resolve bugs. However, real time collaboration would avoid

any overlapping or redundant work. Codebugger [30] is one of the first tools to provide real time

collaborative debugging. It is a Java debugging tool that allows a group of developers to participate,

communicate, and share the debugging session in real time regardless of their physical location [30].

Moreover, some collaborative IDEs such as the IBM’s Jazz [31] support a form of real time

collaborative debugging.

In contrast, a passive form of collaborative debugging has emerged recently called Cooperative

Bug Isolation (CBI) [32]. It targets real world bugs in released software. The information from

successful runs as well as failed runs is sent into a central database. Then statistical inference is

applied on this collected information to locate the root cause of reported bugs. This form of

debugging process is collaborative in the sense of collecting data used to locate the root cause of a

bug automatically. See Section 4.3.3.4.

26

2.6.4. Debugging Parallel and Distributed Systems

Distributed systems and their debugging techniques are beyond the scope of this dissertation.

However, this dissertation utilizes the event-driven debugging approach, which is most-common in

debugging distributed systems. This section highlights a few of the most common characteristics of

distributed systems that makes event-based debugging one of the most used approaches.

Debugging parallel and distributed applications is more complicated than debugging single

threaded or sequential programs. Distributed applications have an extra set of potential bugs, which

relate to the complexity in communication over multiple simultaneous processes. First, there is lack

of global time; each part of a distributed application has its own time-dependent behavior. Time

management is a key characteristic of a distributed system that affects any precise query of their

global state [9]. A second factor is non-deterministic execution; it is common for distributed programs

to behave differently with the same input on different executions [33]. Finally, there are multiple

threads of control: complex patterns of communication are imposed by the parallel activities. This

adds to the challenge of the debugging process [33, 34]. A debugging tool for distributed systems is

better when it is integrated within the system in use. This enables it to play a better role in

coordinating the different parts of the debugging tool itself. For example, the distributed Event-Based

Behavioral Abstraction (EBBA) tools are adoptable to the behaviors of the local and remote system

components [35, 36]. The reader may consult the ACM/ONR Workshops on Parallel and Distributed

Debugging, or the more recent workshop on Parallel and Distributed Testing, Analysis and

Debugging, for additional information on this subject.

27

Chapter 3

Manual Debugging Tools and Techniques

A debugging tool is considered manual when its debugging process depends heavily on the

user’s ability to investigate and search for the root cause of a bug; tools that find bugs without manual

investigation are discussed in the next chapter. For example, manual debugging tools may provide the

ability to control the buggy program’s execution and simplify the user’s investigation. One of these

tools is the source-level debugger, which provides live execution state investigation by means of

breakpoints and watchpoints. This chapter presents an empirical study where different manual

debugging tools are evaluated. Detailed information is given about each debugger or class of

debuggers such as their goals, usability, utilized implementation techniques, and the pros and cons.

This classification is intended to summarize the characteristics of different debuggers, see Figure 3.1

below. The presented tools vary in their user interface, architectural design, implementation, and

capabilities.

Figure 3.1. Manual Debugging Tools and Techniques

28

Figure 3.1 shows a tree with the manual debugging tools and techniques presented in this

chapter. Rectangular shapes used for internal nodes that represent different classes of manual

debugging tools or techniques, whereas circular shapes used for terminal nodes that represent

instances or examples of these manual tools and techniques.

3.1. In-Code Debugging

Some programmers may favor in-code debugging using built-in language features such as print

statements, assertions, macros, and functions that are used only for debugging purposes. For example,

a programmer may have special dedicated functions to traverse some data structure during the

debugging process. These in-code debugging techniques may be enabled and disabled using a

compiler flag under the developer’s control. Figure 3.2 shows a sample debugging macro that can be

enabled and disabled using a compiler flag named DEBUG.

3.1.1. Print Statements

Print statements are used as a tracing mechanism to ensure that control flow reaches certain

execution points with anticipated variable values. Debugging with print statements is considered a

bad technique for many reasons, one of which is the amount of overhead associated with inserting,

modifying, and removing these statements. Print statements are problematic because they pollute the

source code and are always followed with tedious source code cleaning and reorganizing. Dynamic

………...

#ifdef DEBUG

 #define debug(msg) cout<<(msg)<<endl;

#else

 #define debug(msg);

#endif
………….

int main(int args, char **argv)

{

 if (args < 2) {

 debug(“There are not enough arguments”);

 exit(-1);

 }
………….

}

Figure 3.2. An Example of Debugging Macros in C++

29

debugging tools replace print statements with better techniques such as breakpoints and watchpoints,

whereas supporting such techniques is applicable in a broad spectrum of debuggers. These dynamic

print statements can be implemented as a special case of existing breakpoints and watchpoints. Even

though the new techniques provide more capabilities, print statements are still more intuitive

especially for novice programmers. In practice, most programmers consider print statements as one of

their first debugging choices. When print statements are used for debugging, it is recommended to

consider 1) a compiler flag that allows easy enabling and disabling mechanism, or 2) a special

debugging macro that wraps print statements inside for cleaner management. For example, the C

preprocessor #ifdef is used with a compiler flag, such as DEBUG, to automate the enabling/disabling

process during compilation. See Figure 3.2. Furthermore, different flags can be used for different

debugging levels.

3.1.2. Assertions

Assertions are logical expressions that are used to validate pre- and post-conditions and check

temporal values of variables and expressions. Assertions are different from exception handling; when

an assertion evaluates to false, the execution usually terminates. In contrast, exception handling is

often intended to describe how the execution of the program should behave when an unexpected, but

valid, event occurs [64]. Like print statements, assertions can be enabled and disabled with a compiler

flag. Moreover, languages such as C# and Java provide assertions in the form of modules that are

linked into the buggy program during the development process; the .net framework automatically

strips assertions out of the released build. Furthermore, assertions are not limited to debugging; they

are widely used in program validation and verification, where they are used for reasoning about a

program’s execution. Sometimes, assertions are inserted into the source code as comments, where the

compiler transfers these comments into executable objects— this approach is used in Java Modeling

Language (JML) [65] and Temporal Rover [66]. For example, statistical debugging uses assertions to

gather real time information about the execution, and unit-testing tools use assertions to decide

whether a test succeeded or failed.

3.2. Dynamic Source-Level Debugging

This category includes tools that provide techniques to debug a program based on its execution.

3.2.1. Forward Debugging

30

Forward or unidirectional debugging includes debuggers with either console-based commands or

GUIs that are used to control and navigate the execution of the buggy program. The tools in this

category allow only forward execution where the user cannot undo or reverse the execution of a

program. If for any reason the user is interested in an execution state before the current one, he/she

has to rerun the program and stop it at an earlier execution point. The following are different

examples of forward debugging tools.

3.2.1.1. GDB

GDB is a classical example of a typical source-level debugger that provides console-based

interface with inter-process debugging architecture. It depends on the –g option of compilers such as

gcc. Using GDB, users can perform debugging by means of breakpoints, watchpoints, single

stepping, and execution state investigation. It facilitates what is called trap based debugging to

control the execution of the buggy program. The debugger dynamically inserts trap instructions

(illegal instructions) based on the user’s interest. For example, the step command automatically

inserts a trap instruction at the start of the next statement. The finish command inserts a trap

instruction at the return address of the current function. When a user hits continue, the debugger

executes the buggy program until it reaches another trapped instruction or it terminates.

Pros: GDB supports a wide range of debugging features that makes it one of the most used

source-level debuggers on UNIX platforms. It supports different languages such as C, C++,

FORTRAN, and others. GDB has over one hundred basic commands [8]. However, a handful of

commands are enough to make effective use of GDB. Cons: GDB’s trapped instruction mechanism

works without any performance problems as long as the number of trapped instructions is relatively

small. However, a serious performance problem occurs when the frequency of trap/resume increases

before the execution reaches the next stop. For example, consider GDB’s counted commands such as

continue 10000, which can be used to get to the end of a loop. This command may cause the

debugger to impose a 10000 trap/resume cycles before it stops. The performance overhead of each

trap/resume cycle is roughly around one million processor cycles, most of which is due to the cost of

context switching and the system calls used by each trap [1]. A similar situation occurs when the next

command is used in a recursive function, which may result in a large number of trap/resume cycles

before the recursive call is completed [1]. Furthermore, the console-based interface is not easy for

novice and inexperienced programmers [8].

31

3.2.1.2. Perl Debugger

Perl has a built-in debugger named perl5db.pl, which is loaded automatically by Perl when the

user invokes the script with the -d option. It provides console-based interface with in-process

debugging architecture. The Perl debugger is an interactive Perl environment with a debugger prompt

for user commands. The debugger allows the user to enter arbitrary statements; anything that does not

look like an instruction to the debugger is evaluated as Perl code. The Perl debugger provides the user

with the classical debugging techniques that are found in GDB [67]. Pros: this debugger is fully

integrated within the Perl interpreter and can handle arbitrary Perl expressions. Cons: it is not really

intended for extension or debugging research.

3.2.1.3. PDB

PDB is the standard Python debugger (pdb.py). It is a module that defines an interactive source-

level debugger for Python programs. It provides a console-based interface with in-process debugging

architecture. PDB supports the classical debugging techniques such as breakpoints, stepping and

continuing. It also supports post-mortem debugging and it can be called under program control.

However, since PDB is a module, it must be imported into the Python program in order to be used; a

statement such as import pdb must be inserted at the beginning of the Python program. In order to

start the debugger a statement such as pdb.set_trace() should be inserted into the source code at the

point that the user would like to start his/her debugging session; the execution of this statement will

start the debugging session with three actions: 1) stop the execution, 2) show the next statement to be

executed, and 3) wait for the user input after the (Pdb) prompt. At the prompt, the user can perform

actions such as 1) execute the next statement with next and step commands, 2) print the value of a

variable, 3) turn off the prompt with the continue command, 4) continue to the end of the current

sub-routine with the return command, or 5) exit the debugger with the quit command [68].

Pros: PDB provides a combination of the interactive classical debugging techniques found in

GDB and the post-mortem techniques. Furthermore, the interpretive nature and high level of Python

make it a good candidate for research experimentation. Cons: PDB was not designed with automatic

debugging or extension in mind. PDB’s module architecture (in-process) suggests that the use of PDB

perturbs application behaviors such as garbage collection due to a shared heap.

3.2.1.4. SmallTalk Debugger

The SmallTalk system includes very important tools such as a browser, workspace, debugger,

and inspector. These tools provide a complete development and testing environment that assist in the

32

edit-compile-link-run-debug cycle. All SmallTalk objects understand special messages such as

doesNotUnderstand and inspect. The doesNotUnderstand message is produced automatically by

the SmallTalk runtime system as a result of a runtime error. This message causes the SmallTalk

system to provide the user with an error notification, which asks the user if he/she is interested in a

debugging session. During a debugging session, the programmer is able to modify the program while

it is running. In general, SmallTalk runtime errors cause the execution thread to be suspended. In

some cases the runtime error can be recoverable. The user may fix the error and continue the

execution. This simplifies the process of reproducing the bug. In contrast, the inspect message is

produced and sent intentionally by the programmer; it allows a user to inspect an object through the

inspector window [69].

SmallTalk’s debugger has several similarities and important differences compared with UDB

presented in Chapter 9. The most important similarity is that both use a thread model of execution,

which provides relatively good, high performance access to program state. Another similarity is that

most of the debugger is written in the same language as the program that is being debugged.

SmallTalk’s debugger is less separate from the program being debugged, and relies more on manual

instrumentation via subclassing and overriding methods to generate events for dynamic analysis.

3.2.1.5. Deet

Deet is the Desktop Error Elimination Tool, a GUI-based debugger with inter-process debugging

architecture. It is a graphical debugger where users can insert breakpoints, watch variables, and

navigate the source code and examine data structures all with pointing and clicking. It provides the

debugging through nubs, which are small pieces of machine dependent functions inserted into the

target program during compilation. Deet debugging commands are performed through

communications with these nubs, which allow messages between the debugger and its buggy program

to be passed through a pipe or socket. This is an ideal infrastructure for remote debugging. Deet is

implemented in tksh, which is an extension to the Korn shell. It utilizes two implementations: one as

a layer on top of GDB while the other is based on a modified version of GDB with nub API [70, 71,

72, 73].

Pros: Deet is machine independent, graphical, programmable, distributed, extensible, sits on top

GDB. The size of the debugger is less than 1500 lines of shell plus about 1000 lines of C targets

machine dependent code for nubs. The small size is attractive because it simplifies the process of

understanding, modifying, and extending. Cons: Deet’s advanced features such as conditional

breakpoint extensions are programmable in Tcl or shell. Furthermore, Deet does not provide a match

33

of GDB. For example, it cannot examine a core dump, evaluate a regular C expression, or debug at

the assembly language level.

3.2.1.6. DDD

DDD is the Data Display Debugger, a GUI-based debugger with inter-process debugging

architecture [8]. It is a graphical front-end to a set of console-based debuggers such as GDB and

DBX. DDD’s GUI interface provides the ability to display debugging related data such as program

source code, and the ability to perform debugging commands such as breakpoints and watchpoints.

DDD does not perform any debugging by itself, commands are forwarded to the underlying debugger

and information is displayed and visualized in the GUI interface. For example, DDD runs GDB as a

separate process controlled through the traditional GDB command line interface. However, DDD’s

novelty is based on its ability to visually display and navigate data structures by utilizing a typical

debugger. In fact, this feature distinguished it from many GUI extensions to GDB such as XXGDB

[74] and CGDB (previously called TGDB) [75]. Furthermore, DDD’s design requires no modification

of the underlying debugger, which makes it attractive to mainstream developers.

Pros: DDD provides a data visualization and navigation mechanism for simple and complex

buggy programs’ data structures. It provides a simpler user interface to GDB commands; this

interface maybe more attractive especially for novice programmers [8]. Furthermore, DDD

implements a clean design that requires no modification of the underlying debugger and no

dependencies on particular compilers that may emit distinctive symbol tables. DDD is not tied to

local debugging; it can be used in remote debugging facilitated by a long distance remote TTY

communication channel, where DDD is on one machine/processer and the underlying debugger is on

another machine/processor. Cons: DDD endures performance problems entailed by its inter-process

communication architecture. DDD’s architecture imposes four layers of communications; at one end

is the user and at the other end is the buggy program, whereas DDD sits on top of the underlying

debugger that runs the buggy program.

3.2.2. Bidirectional Debugging

Typical source-level debuggers are based on forward execution. Naturally, the debugging

process develops forward along with the buggy program’s execution that moves to the next statement,

line, breakpoint, or watchpoint. A user may stop the execution using breakpoints and watchpoints. At

each stop, the current state is preserved in global variables, objects, and local variables that still have

activation records on the call stack. Returned procedures are part of the execution history that

influenced the current state. However, the only way to check their impact is to rerun and stop the

34

program’s execution at a prior point where the procedures’ activation records are still on the stack.

Moreover, bugs manifest long after their root cause, which is hidden somewhere in the history of

execution prior to their revealed time and location. Using conventional forward debuggers, the user

can investigate the current state. If there is no evidence about the bug’s root cause, the user may

restart the execution hoping to stop at an earlier point where the cause of the bug is still accessible

[1]. The user may end up investigating incremental modifications on the execution state by stepping

program source code line by line.

The ability to go forward and backward in the execution of the buggy program is very useful. It

allows the user to undo part of the execution and track the bug backward till its root cause is located.

However, reversing the buggy program’s execution may require the ability to undo the execution of

each statement. Reverse execution requires supporting techniques to keep track of every assignment,

save the state after each change, and restore it during the reversal process [37, 38]. This can be a very

expensive mechanism, which may need special support from the architecture, the operating system,

and the language compiler. For example, it may need different mechanisms such as full interpretation,

generation of code with inversion options, or special recompilation [56]. A simpler approach can be

achieved by utilizing checkpoints, which are saved images of the execution state at various points. A

debugger that uses checkpoints may allow the ability to undo the execution of group of statements up

until some previously saved state, which may or may not be the most recent one. Furthermore, the

debugger may provide the ability to resume the execution from that reverted point.

3.2.2.1. IGOR

IGOR is an example of a debugger that provides reverse execution [56]. It uses incremental

checkpoint facilities called recovery blocks. Pros: it needs no code modification and it applies to

compiled-languages; no virtual machine is used. It admits to the limitation and the difficulty of being

able to reverse every state of the execution such as a network communication or an I/O, with the

possibilities of some workarounds [56]. Cons: like most reversible debuggers, it suffers from

irreversible inputs/outputs such as mouse movements and print statements [56].

3.2.2.2. BDB

BDB is a bidirectional debugger where each conventional forward movement command can be

applied backward [1]. The target programming language for this debugger was C and C++ running on

Digital/Compaq Alpha based workstation. BDB utilizes a special checkpoint mechanism at each

debugger command, which enables it to reverse each command. The implementation tries to follow

the user interaction with the conventional debugging by creating checkpoints for every possibly

35

reversible command. For example, the debugger supports a list of reversible commands such as next

and bnext, step and bstep, finish and bfinish, continue and bcontinue. Pros: instead of restarting

the execution, a BDB user is able to reverse the execution back to previous points that are saved

based on previous reversible debugging commands. It overcomes the common forward debugging

problem of overstepping the bug. Cons: BDB suffers from platform limitations. The technique

depends heavily on the architecture and the operating system. Moreover, the user can only reverse

execution based on previous debugging commands. Because it automatically associates checkpoints

with reversible commands, if a program crashes before hitting any of these commands, a user will not

be able to reverse and undo the execution.

3.2.3. Programmable Debugging

Conventional source-level debuggers such as GDB are considered procedural, and not

programmable, because conditional breakpoints and watchpoints, are mostly limited to trivial boolean

evaluations, and the user ends up stepping through the source code and examining the program state

such as variables, objects, and the execution stack. In contrast, programmable source-level debuggers

can be scriptable or declarative. This category includes debuggers with commands in the form of a

limited language (or sub-language). Programmable debuggers can be either extensible using special

syntax or notations, or scriptable using special notations that reduce the human factor during the

debugging process. Scriptable debuggers are different from script debuggers that target scripting

languages. This section provides three different examples of programmable debuggers.

3.2.3.1. Dalek

Dalek is a scriptable debugger built on top of GDB to debug C programs. It utilizes an event-

based data flow approach to debug sequential programs. Dalek supports two types of events: low-

level and high-level; high-level events are constructed from low-level events. Events are represented

in a graph where the leaves are low-level events and the interior nodes are high-level events. Typical

low-level events represent execution activities such as entering a procedure, exiting or returning from

a procedure, or hitting a specific execution point. High-level events can be constructed from lower

level events by means of pattern matching or programming language constructs. The latter is used by

Dalek, which claims that its data flow approach is more flexible and provides more user access than a

pattern matching approach. Dalek’s events are associated with an event handler called a callback

procedure, which may generate other events. An event handler may suspend or resume the execution

of the buggy program. Events are provided to the debugger either interactively or through a file. It can

be seen as a language extension to GDB. Pros: it provides a scriptable debugging interface for GDB.

36

Cons: the user has to know and provide the debugger with those events interactively or through files

[42].

3.2.3.2. Acid

Acid is a language interpreter with specialized primitives for debugging support. It uses an

in-process debugging architecture to provide complex interactions between the debugger and the

target program. This in-process design is supposed to simplify differences between different hardware

architectures. The developers of Acid criticize conventional debuggers for their limited features. It

argues that most of the time, it is hard or even impossible to reproduce the state of the program under

GDB, especially when the state includes complex data structures. In contrast, Acid debugging

commands are implemented as primitives that can be used by the programmer. There is no need to

change or extend the debugging core with new functionalities. Users can build their own debugging

context and interface by combining their own functions along with the debugger primitives in

different ways [2].

Pros: Acid provides programmable debugging techniques that may simplify the process of

reasoning about the behavior of the buggy program, all within a rich and flexible debugging

environment. Acid’s supporting language provides a powerful assertion mechanism that allows a user

to assert and validate the logic of the buggy program including its execution state and data structures.

Cons: an Acid user needs to put some effort in learning a new debugging language. Furthermore,

Acid’s in-process debugging architecture intrudes on the buggy program space, which alters the

behavior of the buggy program and may change the bug behavior.

3.2.3.3. DUEL

DUEL is an interactive debugger that extends GDB with a high level expression evaluator that

constitutes a very high level language for debugging. Expressions are a superset of C that includes

generators inspired by Icon, loop iterations for data structures, and conditionals to control the

evaluation of the expressions. The user can formulate complex state queries through combining

expressions. For example, the command ―x[..100] >? 0‖ displays the positive elements of the array x

associated with their indices. DUEL takes the stand that debuggers should not stick to the syntax or

semantics of the target language, but must be more expressive to provide easy and more powerful

investigation. Pros: it provides a simple mechanism to explore program’s data, especially complex

data structures. Cons: it does not provide the ability to control the processes of the buggy program

that is required in some debugging situations, especially when the user is interested in stopping the

execution at some condition or line number [127].

37

3.2.4. Trace-Based Debugging

Most trace-based debuggers are not interactive; they create an execution trace history and allow

the user to investigate the trace. They are post-mortem debuggers. Often, traced data are searched

using query-based techniques, which may be supported with visualization tools that highlight

important features or summarize a big picture.

3.2.4.1. ODB

ODB is an omniscient post-mortem trace-based debugger for Java programs. It traces every

change within the execution state of a program that includes two types of events: method call/return

and assign. Users are able to go backward in time and investigate the history of the execution. ODB

provides a GUI interface, which allows users to navigate the execution history and apply query-based

breakpoints. ODB performs an execution trace, and then the user is able to investigate. The traced

information is collected based on bytecode instrumentation that occurs at load time [47, 48]. Pros: it

provides the ability to go backward in time to investigate old execution states such as locating where

a variable was assigned long before it caused a crash, and finding where a method has been called,

even though it has returned. ODB overcomes some of the problems in classical debuggers; there is no

guessing where to put breakpoints, and no fatal mistakes of going far past the root cause of the

problem. It makes the debugging process more deterministic; all data can be saved to a file and

exchanged between end-users and developers. Cons: it suffers from scalability problems induced by

the large size of the traced data. For example, a small program (about 300 lines of code) can generate

about 2 GB of traced data in 20 seconds [76].

3.2.4.2. TOD

TOD is a scalable omniscient debugger inspired by ODB. TOD utilizes a distributed database in

order to facilitate the ability to process a huge volume of traced data and to permit high performance

event recording and querying. It was implemented for Java by utilizing the ASM instrumentation

framework [50]. Then it was extended to support Aspect Oriented Programming [49]. Pros: it handles

the scalability problem and the limitations of the ODB by facilitating distributed database. It also

provides control flow navigations, and visualization of traced data. It claims an intuitive user

interface, which provides the source window of the current event, the state of the stack frames, and

the current objects. Cons: TOD’s implementation of the database solution makes it difficult to deploy.

In order to use the debugger, a user needs to know how to setup this distributed database correctly.

Furthermore, there is an index for each possible attribute value. For each event that enters the

38

database it updates the indexes that correspond to its attributes. This generates more indexing data

than event data, which increases trace size up to 5x.

3.2.4.3. JDLab

JDLab is the abbreviation for a set of tools named Java Debugging Laboratory. It debugs Java

programs by analyzing traced data. Those tools are built on top of the Java Virtual Machine Debug

Interface (JVMDI) for acquiring execution events. This simplifies the development process and puts

the focus on the target problem instead of being focused on the instrumentation technique. A

JDLabAgent generates about 10 bytes of data per event and it needs about 1ms to store 100 events. It

reduces the amount of traced events by utilizing graph algorithms, which makes the JDLabAgent

more usable compared with other trace-based debugging tools. Furthermore, unlike other trace-based

tools that track only method entries and exit events, JDLab can reconstruct the complete method

execution [76, 77]. Pros: JDLab 1) provides traces with no source code or bytecode modification,

2) requires no modification for the virtual machine, 3) has selective monitoring points when the

source code is not available, 4) employs low overhead events, and 5) supports event analysis for

threads, stack traces, methods’ arguments, methods’ return values, control flow, and exception

handling.

3.2.5. IDE-Based Source-Level Debugging

Some debuggers are integrated within an IDE, which packages and simplifies the compile-edit-

debug cycle. Most of the time, the user is able to navigate and change the source code, place

breakpoints and watchpoints directly on the source code with pointing and clicking. Furthermore,

single stepping can be watched directly in the source code. Microsoft Visual Studio and Eclipse are

two of the most widely used IDE source-level debuggers.

JIVE is a declarative and visual debugging environment integrated within the Eclipse IDE. It

utilizes the Eclipse architecture and benefits from the JPDA debugging architecture. It obtains

debugging information through queries over the program’s execution trace and specific runtime

states. Debugging information is presented through a visual mechanism [40]. Pros: it makes use of

the JPDA and the Eclipse IDE, which give it a robust infrastructure. Cons: it handles only small to

medium size programs. It runs slowly because of the nature of the event collection mechanism and

the visualization views that are updated after each event.

39

3.3. Model-Level Debugging

Complex software is often designed with the aid of models such as UML diagrams. UML

models provide a high level of abstraction, which describes the system behavior through state

machines, activities, and interactions. Debugging a system model in an early stage of the development

life cycle would save time later and reduce or prevent costly rework [78]. Manual model-level

debugging targets UML behavioral models, which can be debugged using dedicated debuggers.

The UML Model Debugger is built to simulate as much as possible the Eclipse code debugger

with features such as 1) manually controlling the debugging session, 2) observing current object

attributes, and 3) breakpoints placed on behavioral elements. However, debugging at a very high level

of abstraction has to sacrifice debugging features found in lower level debuggers and at the same time

requires new advanced debugging features. For instance, there is no need for threads and stack

investigation, but there is a need for behavioral model elements such as transitions, and actions [78].

3.4. Summary

This chapter presented various manual debugging tools and techniques. Table 3.1 shows the

main characteristics of these tools and techniques based on different categories, which include: the

debugging process, the user interface, the debugging tool architecture, and the internal technique used

to provide the debugging information. Each one of these tools addresses one or more main the

debugging techniques. However, the main problem is their lack for an easy extensible mechanism that

simplifies the process of adding new debugging features or allows them to collaborate with various

debugging tools. This limitation is addressed by this dissertation.

40

Table 3.1. Manual Debugging Tools and Techniques

 Debugging

Process

User

Interface
Architecture Implementation

N
o

.

Debugging

Tool/Technique

Dynamic

ID
E

-I
n

te
g

ra
te

d

G
U

I-
B

a
se

d

C
o

n
so

le
-B

a
se

d

In
-P

ro
ce

ss

In
te

r-
P

ro
ce

ss

p
ro

g
ra

m
m

a
b

le

E
x

te
n

si
b

le

B
re

a
k

p
o

in
t-

B
a

se
d

T
ra

ce
-B

a
se

d

M
o

d
el

-B
a

se
d

U
n

id
ir

ec
ti

o
n

a
l

B
id

ir
ec

ti
o

n
a

l

1 Print Statements X X

2 Assertions X X

3 Perl Debugger X X X X

4 Python Debugger (PDB) X X X X

5 Smalltalk debugger X X X X

6 GDB X X X X X

7 CDB X X X X

9 Deet X X X X

10 DDD X

11 IGOR X X

12 BDB X X

13 Dalek X X

14 Acid X X

15 DUEL X

16 ODB X

17 TOD X

18 JDLab X

19 JIVE X

20 UML model debugger X

41

Chapter 4

Automatic Debugging Tools and Techniques

Each bug is associated with a set of symptoms. At some point, the debugging process may aim at

reducing the program or its set of inputs into the smallest possible subset that maintains these

symptoms. The precision of the simplification process or the amount of reduction in the generated

subset may determine the effectiveness of the debugging tool and the debugging process. One of the

reduction techniques is binary search that repeatedly eliminates some portion of the program until the

root cause of the bug is located [79, 80]. However, even with binary search, the manual investigation

is very tedious and time consuming. This intensifies the need for automatic debugging techniques;

especially for bugs that are difficult to catch using standard tools and techniques.

Figure 4.1. Automatic Debugging Tools and Techniques

42

Automatic debugging aims at improving the efficiency of the debugging process by automating

some or all of its boring and time-consuming parts. The ultimate goal is to make the debugging tool

smart enough to locate the root cause of a bug. For example, program slicing utilizes algorithms to

eliminate some program parts that are irrelevant to a specific test case [29]. In practice, some

automatic debugging techniques are still immature. Often, the reduced search space is still too large

for the root cause to be located easily. Moreover, the kinds of bugs that are catchable by automatic

methods are often uncertain, inconsistent, or perhaps even enigmatic; they can be a bug in one

situation while not in another.

This chapter provides a classification for automated debugging tools and techniques. It presents

detailed information about each tool’s goals, usability, utilized techniques, and the pros and cons. The

top level of this classification is divided into two categories based on the kind of analysis in use;

whether it is static or dynamic. Each of these techniques is divided into sub-categories. Figure 4.1

shows a tree with the categorization used in this chapter. Internal nodes represent a class of debugging

tools or techniques whereas leaves are instances of these tools and techniques.

4.1. Static Debugging

Static analysis is a technique that is used to retrieve valuable information about the program

from its source code or object code. They find bugs by analyzing the source code or object code

without considering an actual program run. In some situations, the source code is analyzed to find

bugs that may occur during the execution of the buggy program. In other situations, the source code is

analyzed looking for an already identified bug. For example, static slicing techniques generate a

subset of the source code that is responsible for a specific bug.

Static analysis is used in a variety of debugging tools to check semantics, consistent typing,

memory allocation, logical statements, and security flaws. Some of the static analysis techniques are

standalone tools while others are techniques employed by other tools such as compilers. The

following is a list of some of the tools that use static analysis techniques to find potential runtime

bugs.

1. CodeSurfer is a product of GrammaTech for statically analyzing C programs. It mostly finds

bugs by slicing; a slice is a collection of all the code that contributes to the computation of a

value. It provides the ability to detect some common language misuses and memory related

bugs [86].

43

2. Compiler Options such as the –Wall option in the GCC compiler, which enables warnings

for many common errors [81].

3. ESC/Java and ESC/Java2 are compile-time program checkers. They find common runtime

programming errors in Java programs by static analysis means applied directly on the program

source code. Users can control the kind and amount of checking performed through specially

formatted comments [88]. ESC/Java2 is an extension that targets JML.

4. FindBug is a Java based tool that employs static analysis techniques to find runtime bugs. It

works on the object code of the compiled Java program; it does not need the actual source

code. This free standalone tool employs the concept of bug patterns, which are common

coding practices that are known errors based on a variety of reasons such as misunderstood

language features, misused API, and bad use of types and wrong boolean operators. This tool

is extendable through its plug-in architecture, but any extension requires expert knowledge of

the Java bytecode. In practice, its report of false warning falls under 50% [82, 83].

5. Lint is a static analysis tool that targets C/C++ programs on UNIX platforms. Splint is an

open source tool that can be used on a C/C++ program. It is a stronger checker than standard

Lint. It checks things such as: unused declarations, type inconsistency, variables used before

being assigned, ignored return values, apparent infinite loops [85]. PC-lint: is a product of

Gimpel Software for statically checking C/C++ programs. It can find suspicious program

properties such as uninitialized simple and aggregated variables, unused variables, unused

functions, variables that are assigned but not used, and code that is unreachable [87].

6. PMD is a Java based standalone static analysis tool that works directly on the source code of

the target program. It finds bugs such as dead code, duplicated code, and overcomplicated

code [84].

In general, static analysis is usually used to find bugs that do not depend on a specific test run.

Because they reason about all possible program runs, static analyzers may perform a deeper analysis

than a tool that employs run-time dynamic analysis techniques.

4.2. Abstract Debugging

Abstract debugging is a static semantic-based debugging approach. It uses an abstract

interpretation that enables the debugging of programs without their execution. Abstract debugging

and abstract interpretation are different. The former requires precise interpretation in order to find

and locate bugs successfully; approximation is not applicable in debugging [37, 38]. In contrast,

44

abstract interpretation is about finding a safe ―flow-insensitive‖ approximation of runtime program

properties, which must hold at some point of the execution [38]. Abstract debugging finds the root

cause of potential bugs and their conditions through two types of assertions: 1) invariant assertions,

which they must always hold at the predefined control point in a very similar fashion to the assert

statement in C, and 2) intermittent assertions, which are assertions that must eventually hold at a

predefined control point. Users can provide the debugger with invariant and intermittent assertions

and the debugger automatically checks for the validity of a program, tests the behavior of certain

execution paths, and finds a bug’s root causes instead of their occurrences. Abstract debugging is

efficient for higher-order imperative languages as well as logical languages [37].

Syntox is a research prototype that utilizes abstract debugging and targets the Pascal language. It

finds bugs related to scalar variables in the program such as array indexing and range sub-types. The

user is able to insert assertions into the buggy program source code and the debugger treats any

violation of these assertions as runtime errors [37].

4.3. Dynamic Debugging

Dynamic debugging is primarily based on information obtained from the execution of the buggy

program. This includes a broad set of debugging tools such as 1) libraries or modules that can be

linked into the buggy program, and 2) standalone debugging systems. Some dynamic debugging tools

may utilize some information obtained implicitly from a static analysis technique. These tools can be

considered hybrid, however, this chapter treats them as dynamic.

4.3.1. Model Based Software Debugging

Automatic Model Based Software Debugging (MBSD) is the process of identifying the location

of defects in a program based on models generated automatically from the execution of a program.

The generated (observed) model is compared against the intuitive or theoretical model. Model based

debugging was first introduced by Console et al [89]. MBSD is an application of Model Based

Diagnosis (MBD) [46]. Sometimes, the generated models are criticized for their accuracy, fault

assumptions, and their significant computational effort [90]. The difference between the anticipated

model and the actual observed model is used to identify components that deviate from the normal

behavior and produce the observed behavior. The model is partitioned into sub models based on the

actual program source code. In this way, unmatched models can be provided in terms of the actual

source code segment.

45

There are different model based debugging approaches; this section defines only two of them.

The first is dependency based models, which are models derived from the dependencies between

program statements. Static and dynamic analysis techniques can be employed to find such

dependencies. This category includes many sub-models such as: execution trace based dependency

model (ETDM), detailed dependency model (DDM), and summarized dependency model (SDM).

The differences between models are based on the dependencies themselves and the heap data

structures [46, 90].

The second is value based models, which are models derived based on concrete values obtained

from the source code of the program using static analysis that utilizes the program’s control and data

flow. It works by comparing values computed by the program containing faults with values expected

by the specification of a test suite. This approach is more precise than the dependency based model.

However, the two model approaches implement expensive computations that are proportional to the

program size [90].

4.3.1.1. MBD

Model Based Debugging (MBD) [91] is a technique that, instead of analyzing the source code or

the execution of the program in order to reduce the search space of the bug location, focuses on how

the program should behave according to a behavioral model. MDB can be described as a black-box

that takes as input: 1) the buggy program, 2) an extended finite state machine (EFSM) that represents

the buggy program’s behavioral model, and 3) a failing input sequence. It performs the debugging

process by mutating the behavioral model to represent various faulty behaviors. This mechanism

reduces the buggy program space, and produces a subset of the behavioral model that can lead to the

failure. Furthermore, the subset is ranked as a list of suspicious diagnoses [91].

4.3.1.2. JADE

JADE [92] is a debugger that implements the functional dependency model. It validates models

based on the statement level. It combines the standard debugging diagnosis features. The debugging

is obtained by representing the program as a dependency model, which is compiled into a logical

model. The actual execution of the program is observed to build its behavioral model. Then the

observed behavior and the logical model are used to determine potential bugs and the position of their

root causes. A bug location is defined based on the statement level [92].

46

4.3.1.3. EBBA

EBBA is an acronym for Event Based Behavioral Abstraction. It is a high level debugging

approach that aims at the debugging of complex distributed systems. EBBA builds an execution

model based on the actual behavior of the program and compares it to the expected behavioral model.

A set of different behavioral models is constructed from the buggy program to characterize and direct

the user with more insight on the investigation. Comparing different models will help characterize

and identify faults and their behaviors [36].

4.3.1.4. Ariadne

Ariadne is a post-mortem event-based debugger targeting explicitly parallel languages. It

compares the intended program behavior provided by the user with actual program behavior captured

by event traces. Events represent 1) low-level inter-process communications, 2) language specific

events, and 3) user defined events. Traces are recorded into an execution history graph where nodes

represent events and edges represent orderings. The debugger compares the user model and the actual

execution history graph looking for a complete or partial match of the sub-graphs [93].

4.3.2. In-Process Debugging (Debugging Libraries)

Dynamic in-code debugging performs dynamic checking on a program’s execution properties

through libraries or modules that are linked into the buggy program. This category includes different

tools, each of which targets a specific execution behavior. Here are some of the most interesting ones:

1. BoundsChecker is a product of CompuWare Corporation. It checks memory errors and API

calls in C and C++ programs. It instruments the intermediate representation generated by the

Microsoft Visual C++ compiler, which may be faster than modifying the original source code

[95].

2. Electric Fence is a library that can be used to debug memory related bugs in C and C++

programs. It must be linked into the buggy program. It produces warnings for potential

memory related bugs such as freeing memory that does not exist [98].

3. Insure++ is a product of ParaSoft that can find memory bugs such as referencing a null or

uninitialized pointer, or an invalid memory location. The program has to be recompiled using

this tool instead of one’s own compiler [94].

47

4. mpatrol is an open source memory allocation library that targets runtime memory problems in

C and C++ programs. It can be used with gcc as a command line option during compilation

such as "-fcheck-memory-usage" [97].

5. Purify is a product of IBM’s Rational Corporation. It checks memory errors and API calls in

C and C++ source code and garbage collection problems in Java code. It modifies the object

code used to build the target executable [96].

4.3.3. Dedicated Debuggers

Dynamic standalone automatic debuggers include a wide range of automatic debugging tools and

systems. Each tool implements a specific debugging technique in favor of a specific class of bugs.

This section highlights some of the most distinctive ideas, techniques, and tools.

4.3.3.1. Convergence Debugging

Convergence debugging is an automatic debugging technique that utilizes a set of test cases. It

isolates different test cases based on their convergence on the root cause of the failure by analyzing

the internal control and data flow of the failed test case. The convergence algorithm selects the test

cases that maximize the effectiveness of locating faults by measuring the effectiveness of the test case

in isolating the root cause of a failure. It consists of a means for simplifying inputs, internal data, user

interaction, and code. The results of these simplifications are analyzed to find the root cause of the

failure. It uses the test case that caused the failure to find all closely-related and distantly-related test

cases that also cause the failure. Furthermore, it finds all distance-successful test cases. The failure’s

root cause is generated based on the difference between the failure cause and the converging test

cases based on ―tight fault neighborhoods with respect to control and data‖. It measures the distance

between a set of debug test cases and the actual test case that caused the failure and it finds related

failures around an already known fault [29].

Pros: it helps find related failures based on already known faults. In other words, it produces

different circumstances that produce the same failure. It provides a tool that is applicable for a wide

range of languages such as C, C++, C#, VB, and Java. The tool is based on a commercial tool named

Diversity Analyzer [99] used in the Microsoft .net framework. This tool can handle mixed language

projects and multiple projects simultaneously, dynamically linked libraries, and multitask code. Its

goal is to provide an efficient mechanism to measure the power of a test set to isolate the root cause

of a failure [29]. Cons: it depends on the programmer to locate the fault based on the convergence

debugging data. The tool is limited to the Microsoft .net environment.

48

4.3.3.2. Program Slicing

Program slicing was introduced in 1979 for debugging. However, it is currently extended to

program testing, software measurement, comprehension, and maintenance. It is considered an

automated reverse engineering technique. When it is employed for debugging, it extracts some parts

of the program based on some computations. The extracted parts can be the good parts or the buggy

parts. It includes two major approaches: 1) static slicing that utilizes analysis techniques based on the

static information contained in the source code, and 2) dynamic slicing that utilizes analysis

techniques based on the program execution such as control flow, data flow, or both. For example,

JSlice is dynamic slicing tool for Java programs. Slicing can be 1) forward slicing, which includes all

statements related to the slice criterion, 2) backward slicing, which includes all of the program

statements that are used in the computation of the slice criterion, 3) hierarchical dynamic slicing

[100], or 4) thin slicing [101].

Program slicing is implemented by one of three methods: 1) iterative dataflow equations,

2) relational calculus based on information-flow, and 3) graph reachability by constructing the

program’s graph dependency followed by implementing graph reachability [102, 103]. Pros: slicing

tools help users locate source code related to specific conditions such as a relevant variable.

Generally, it is more efficient in debugging small programs than conventional tools [27]. Cons:

slicing tools are unable to point the user at the specific root cause of a bug. Instead, they reduce the

search space into a subset that may be as big as one third of the original program. When a user is

looking for information relevant to a variable, he/she has to determine what variable is of interest

before applying the slicing technique [79, 80].

4.3.3.3. Program Chipping

Program chipping is a simple automatic debugging technique that isolates bugs by chipping

away parts of the program based on symptoms. Symptoms might be errors in the output, infinite

loops, and unhandled exceptions, for example the specified symptoms are used to reduce the size of

the buggy program based on various heuristic techniques including binary search [79, 80]. The goal is

to make the programmer focus more on the problematic (symptomatic) part that makes the bad

output. It employs simple techniques based on the syntactic structure of the program. This makes

program chipping different from program slicing. In program slicing, the user looks for a specific

behavior in respect to a variable or set of variables. In contrast, program chipping allows the user to

search for a specific behavior in the program as a whole (black-box) and proceed automatically until

the bug is found. Program chipping is simpler than slicing and it does not require sophisticated

49

program analysis techniques, as slicing always does. Program chipping is a specific application of a

general technique called data slicing, where the buggy program is the data and the chipper is the data

debugger used on the syntactic structure of the program [79].

ChipperJ is an application of the program chipping technique. It builds a parse tree for the

original program, and then the ChipperJ tool deletes or modifies one or more nodes to generate other

parse trees, each with a variant that is validated until the best variant is identified [79]. Pros: the

results are encouraging with 20% to 35% reduction in the original size of the program. Cons: it takes

about an hour to perform the reduction of 20% to 35% of a large program such as the Java Compiler.

It does not guarantee to find the minimal variant and it does not work on programs that have

nondeterministic output such as multithreaded Java programs. Furthermore, the chipper may remove

critical read statements from the program that will change the variant [79].

4.3.3.4. Statistical Debugging

Statistical debugging is an automatic debugging technique for finding and locating bugs in

released software systems by implicitly collecting real execution samples from real end-users. While

other debugging techniques collect information that is limited to a particular failed run, statistical

debugging depends on information gathered at all times. It depends on data sampled from a wide

range of different actual failed and successful runs. It consists of two phases: 1) sampling the program

from real users at a minimal cost, and 2) applying a statistical analysis mechanism to locate and find

the root cause of real world bugs [15, 16, 59, 60]. Information is collected from running programs

through a sparse sampling mechanism, which is scalable and has little impact on the performance of

the system. Information is transmitted into a central database for processing. The gathered

information reflects a large number of executions in distant locations [15]. Statistical debugging

provides the ability to systematically compare data from failed runs with data from successful runs,

and improves the debugging process. Information is gathered sparsely using logic predicates that

randomly sample data from released software [60]. Pros: its scalability deals with real widely used

programs and a wide range of bugs. The sparse sampling mechanism has little impact on the

execution of the program. Cons: it requires sampling of the program information over millions runs.

4.3.3.5. Delta Debugging

Delta debugging is an automatic way of narrowing down the differences between a failed run

and a successful run [22]. It is a fully automatic debugging technique that finds the simplest test case

that generates the failure, and highlights the difference between a passing and failing test case. Since

reduction of test cases is a human centric process, delta debugging utilizes two algorithms to

50

automatically minimize a set of test cases. First, a simplification algorithm, which implements a

recursive technique to keep examining a smaller set of the input that produces a failure until no

smaller set of inputs can be found that can generate the failure. Second, an isolation algorithm that

finds a passing set of inputs, which when some elements are added to it, produces a failure. This

algorithm finds the biggest passing set of inputs that is a subset of the failing case [21, 41]. For

example, DDinput is a plug-in that facilitates delta debugging within the Eclipse IDE. Pros: it is an

efficient tool for programs that expect structured inputs [41]. Cons: the end user must provide the

debugger both a successful run and a failed run. Moreover, it takes a considerable amount of time to

finish the debugging process. However, this time can be justified by the quality of the results and the

precision of the output in pinpointing at the root cause of the bug.

4.3.3.6. Hierarchical Delta Debugging

Hierarchical Delta Debugging (HDD) is a new data debugging technique that is intended to

speed up the process of debugging with the delta debugger. It produces a better quality output by

minimizing all failure-inducing inputs [41]. HDD focuses only on the simplification algorithm. The

technique starts by applying delta debugging to the input data at each level. This excludes a large

portion of the input at an early debugging stage. Pros: it simplifies the debugging output. It reduces

the number of test cases by an order of magnitude over the original general delta debugging

simplification algorithm. It also significantly speeds up the simplification time [41]. Cons: it is

limited to programs that only accept structured inputs such as: 1) a programming language compiler

or interpreter that parses input using a context free grammar fed to a compiler or interpreter, 2) an

HTML/XML web page that maintains the nested structured inputs, 3) a video codec with limited

depth, and 4) a user interface. It works better when there are few dependencies between the input

data. It also depends on the programmer to formalize the hierarchy of the input such as building the

syntax tree [41].

4.3.3.7. Relative Debugging

Most software programs are in a constant modification process. Often, the modified program

produces the same output as the original program does. Relative debugging facilitates the ability to

debug two versions of the same program by providing the debugger with the expected similarities

between their execution states [55]. Relative debugging is different from delta debugging. The former

targets two different executions of two related programs—two different versions of the same

program, each with different internal implementation or even different programming language. In

contrast, delta debugging targets two different runs, a failed one and a successful one, for the exact

51

same program. Relative debugging can be used to debug modified programs by comparing their

execution states. The bug symptom includes two related programs that generate different outputs or

behave differently on the same set of inputs. For example, when a program is ported into a new

platform, a relative debugger helps compare data and execution state between the two platforms. This

may include environmental changes such as system libraries or new compiler versions. A relative

debugger can verify the similarities and find any differences between the two programs [54, 55].

Relative debugging has several implementations. Guard is the classical example that supports

relative debugging in heterogeneous environments. VSGuard is the Microsoft Visual Studio

implementation of Guard. It provides a wizard to build one solution for a project that is ported from

Microsoft Visual Studio version 6.0 to Visual Studio .net. The user is able to debug the new program

by specifying assertions on the related data structures. Pros: a relative debugger may run the two

programs simultaneously, and it compares them in real time. It finds differences which are associated

with the exact line in the source code. Besides the significant relative debugging techniques, it

maintains the traditional functionalities of a classical debugger. A relative debugger helps shift the

developer’s concerns from the actual state of the program into what is the difference and where it

starts to happen [54, 55]. Cons: relative debugging allows the user to compare the two programs’

execution based on expected predefined associations, but it depends on the user who has to specify

the points of comparison and anticipate the similarities.

4.3.3.8. Replay Debugging

Replay Debugging (or Record Replay Debugging) is a class of debuggers that provides the

developer with a simple mechanism to reproduce a bug that was encountered by the end-user at his

site. It is different from recording the final core dump caused by a crash and sending it to the

developer that is adopted by many software vendors. A replay debugger may continuously record

information from released software. However, only the recorded information before the occurrence of

the crash is sent to the developers, so they can deterministically replay and reproduce the bug in their

environment; this may include replaying the last several million instructions before the crash [53]. For

example, BugNet focuses only on the application level events; it does not record any event or

instruction from the host operating system. So, it cannot replay the complete system execution [53].

Jocky is another example of this kind of debugger [104]. However, Jocky is a library that is linked

into the program to record invocation of system calls and CPU instructions. It utilizes record replay

debugging that targets interactive and distributed systems running on a Linux platform. Jocky

simplifies tracking complex communication with the operating system. It implements a form of

checkpoints that simplifies the management of long-running programs [104].

52

4.3.3.9. Whyline

Whyline debuggers simplify the debugging process by elevating the human interaction with the

debugger to the natural language level. A user is able to ask typical questions about the execution of

the program, such as Why did? and Why did not? It implements a trace-based debugging approach that

tracks the complete execution history. The approach analyzes the traced data and provides the user

with information in terms of answers to the provided questions. Two different Whyline debuggers

have been implemented. The first is for the Alice framework and the other is for Java programs.

Whyline for Java instruments the buggy program’s bytecode using the java.lang.instrument package

[27]. Pros: Whyline invented a superior debugging interface that provides the ability to ask natural

language questions about the program’s execution properties; it elevates the debugging process to a

new level of interactions. A study has found that Whyline debuggers reduce the debugging time,

especially for novice programmers. Cons: it faces scalability limitations due to the huge volume of

traced data. For example, it is limited to programs that do not execute for more than a few minutes.

This prevents its adoption in long running programs.

4.3.3.10. Coca

Coca is an event-based automated debugger for C. It builds a trace of events, where each event

has a semantic value and attributes. It provides a Prolog query-based debugging interface driven by

the attributes of the runtime event. The searching mechanism combines data and dataflow instead of

only one. It differs from most trace-based debuggers in its event manipulation mechanism. Execution

events are not stored in any kind of database. Instead, Coca provides an on the fly analysis

mechanism executed synchronously along with the trace. It implements breakpoints based on events

and language semantics. Coca claims that conventional source-level debuggers such as GDB are

missing the semantic part. Coca events are fine-grained, and are used to model the sequential

execution of programs written in C. Pros: it provides automatic debugging mechanism with on the fly

event analysis techniques. Cons: it requires the user to master at least a handful of Prolog primitives

in order to perform a simple debugging session for a C program [105].

4.3.3.11. Valgrind

Valgrind provides dynamic error detection for runtime bugs such as dangling pointers and

memory leaks. It utilizes a simulation-based technique that models the target CPU for debugging and

profiling. It provides an automated debugging approach based on synthetic CPU simulation. It

analyzes runtime properties and detects specific execution faults such as memory corruptions. This

53

type of debugging support depends heavily on the host operating system and the target architecture.

Its dependency level complicates any attempt at porting its underlying mechanism to new platforms

or architecture. For example, regardless of Valgrind’s outstanding debugging capabilities, it is still

limited to the UNIX based operating systems; in particular Linux. Currently, Valgrind is supported on

architectures such as x86, amd64, ppc32, and ppc64. Pros: Valgrind is designed with ease of

extensibility in mind. For example, new tools can be created without any need for modification of its

core structure. It provides exceptional debugging capabilities for C and C++ programs, especially

when it is used to debug memory corruptions. Moreover, it requires no modification on the target

program with any instrumentation or special compilation. Cons: it suffers from a noticeable delay that

ranges from a 20x to 50x slowdown during the evaluation of the buggy program. Valgrind’s lack of

portability for Windows and Mac OS limits its value [18, 19, 58]. Valgrind has many useful

extensions that include:

1. Memcheck is a memory-management checker that detects memory problems such as leaks and

uninitialized memory. The tool monitors critical program activities such as reads, writes, free,

delete, new, and malloc.

2. Cachegrind is a cache profiler that simulates the CPU cache such as L1, L2, and D1. It detects

all cache misses in programs.

3. Callgrind is an extension to the Cachegrind that utilizes the caller-callee relationship in

reasoning about their role in your cache misses. The generated data from this tool is huge.

KCachgrind is a KDE visualization tool that can simplify the process of reading this tool’s

output.

4. Massif is a heap profiler that measures the amount of heap memory used by the program along

with heap blocks and the stack size.

5. Helgrind is a thread synchronization detector that finds synchronization errors in the use of

the pthread primitives, potential deadlocks, and data races.

4.4. Summary

Throughout this chapter, various automatic debugging tools and techniques were presented.

Table 4.1 shows the main characteristics of these tools and techniques based on different categories,

similar to the ones presented in the summary of Section 3.5.

54

Table 4.1. Automatic Debugging Tools and Techniques

 Debugging Process
User

Interface
Architecture Implementation

N
o

. Debugging

Tool/Technique

A
b

st
ra

ct

S
ta

ti
c

Dynamic

ID
E

-I
n

te
g

ra
te

d

G
U

I-
B

as
ed

C
o

n
so

le
-B

as
ed

In
-P

ro
ce

ss

In
te

r-
P

ro
ce

ss

P
ro

g
ra

m
m

ab
le

E
x

te
n

si
b

le

T
ra

ce
-B

as
ed

M
o

d
el

-B
as

ed

F
o

rw
ar

d

R
ev

er
si

b
le

1 gcc -Wall X X

2 FindBug X X

3 PMD X X

4 Lint/Splint/ PC-Lint X X

5 CodeSurfer X X

6 ESC/Java X X

7 Syntox X X

8 MBD X X

9 JADE X X

10 EBBA X X

11 Ariadne X X

12 Insure++ X X

13 BoundsChecker X X

14 Purify X X

15 mpatrol X X

16 Electric Fence X X

17 Convergence Debugging X

18 Program Slicing X

19 Program Chipping X

20 Statistical Debugging X

21 Delta Debugging X

22 HDD X

23 Relative Debugging(Gard) X X X X

24 Replay Debugging X

25 Whyline X X X X

26 Coca

27 Valgrind X X X X X X

55

Part II

Event-Based Debugging Framework

56

Chapter 5

Alamo Monitoring Framework

Alamo stands for A Lightweight Architecture for Monitoring. It is a monitoring framework

developed originally to support program visualization. Alamo is integrated within the Icon and

Unicon virtual machine [108]. A subset of Alamo was implemented for C and Python [106, 107].

This dissertation builds on Alamo’s monitoring features to facilitate a high level abstraction layer for

Unicon debugging tools. The implementations of the most needed extensions are presented in Chapter

6. The result of these extensions is called AlamoDE (Alamo—Debug Enabled), which is presented in

Chapter 7. This chapter presents Alamo’s most important features, within Unicon’s virtual machine,

that is used as foundations for the new AlamoDE.

5.1. Unicon’s Co-Expression Type

Unicon’s threads are called co-expressions. Co-expressions provide synchronous, but not

simultaneous, expression evaluation mechanism within Unicon’s virtual machine. Unicon’s co-

expressions are similar to co-routines found in other languages. Co-routines are procedure calls where

the state of local variables and execution control are saved to be resumed at the next entrance to that

procedure. In contrast, Unicon’s co-expressions are independent threads of control extended to

include arbitrary expression evaluation. This capability of synchronous co-expressions inside the

virtual machine provides the ability for different expressions (statements) to be evaluated in a

synchronous fashion within the same procedure.

Unicon’s co-expressions are in-process threads that are hidden from the operating system. The

evaluation of a co-expression requires both an interpreter stack and a C stack that are separate from

the stacks of the main program. This independent evaluation mechanism provides clean

intercommunication facilities within the same address space. This makes co-expressions suitable for

very high level fast communication techniques with no intrusion of one co-expression into another.

Furthermore, a co-expression context switch does not include any operating system calls. Because

they are synchronous, co-expression switches are much faster than typical thread switches such as

those provided by the pthreads library [116].

57

5.2. Architecture

Alamo’s architecture is based on the thread model of execution monitoring, where a monitor

program and its target program are separate threads in a shared address space. Alamo extended the

co-expression facility with the ability to load a program. Each loaded program is set up with its own

code, static data, stack, and heap, but without linking symbols into the current program. This

capability allows a program to load another program and execute it in a controlled environment.

Standalone programs can be loaded and executed as if they were co-expressions of simple

expressions or procedures. Switching between co-expressions is done through a small piece of

assembler code that performs a lightweight context switch. The state of the program is saved and the

control is transferred into the other program without the involvement of the operating system.

Figure 5.1 shows a monitor program and its target program all within the same Unicon’s virtual

machine. The monitor program resides in the main co-expression (thread #0) whereas the target

program resides in a different co-expression (thread #1). Whenever the monitor program requests an

event from the target program, a lightweight co-expression context switch transfers control to the

target program. Then the target program resumes its execution until its interpreter encounters a

runtime event of interest to the monitor. Then another co-expression context switch transfers the

control back to the monitor program.

Figure 5.1. Alamo’s Architecture

Unicon’s VM

VM

Interpreter

(Thread #1)

Target

Program

Event Report

Event Request

VM

Interpreter

(Thread #0)

Monitor

Program

Virtual Machine Instrumentation

In-process Execution Sate Access

Very lightweight

Co-Expression

Context Switch

58

5.3. Features

Alamo is a monitoring framework adequate for passive observation of program execution,

suitable for high level sophisticated software visualization tools. The framework provides execution

monitoring through a variety of tools and techniques that are integrated within Unicon’s virtual

machine and its runtime system.

5.3.1. VM Instrumentation

One of the most difficult parts of writing execution monitors is the instrumentation task.

Software instrumentation can be manual or automatic. Specific instrumentation frameworks can be

employed to instrument the target program with specific instrumentation points, or sensors, that

monitor its execution properties. Most automatic instrumentation tools modify the program’s source

or object code. For example, most Java monitoring tools instrument the target program’s bytecode at

load time [24,25,47,48]. In contrast, Alamo facilitates a third kind of instrumentation mechanism,

which instruments the virtual machine itself where the target program is to be executed. Specific

locations in the source code of Unicon’s virtual machine and its runtime system include conditions

that test for specific execution events. Even though this approach has some potential performance

overhead especially for unmonitored programs, it provides a seamless instrumentation mechanism,

which requires no special compilation and no source or object code modification. This makes it very

attractive for experimentation and rapid prototyping of high level visualization tools and techniques.

5.3.2. Dynamic Loading

Dynamic loading is the process of loading modules into an application at runtime rather than at

compile time; the dynamic loading does not include merging names of the loaded modules with the

host program. It is a subset of dynamic linking. Dynamic linking is the process of linking a module

into an application at runtime; it includes loading and merging names. The linking process merges the

executable and the linked module(s) [117]. The result is a shared name space, which may cause some

naming conflicts between the application and the linked module(s) and perturbs the application

behavior due to the shared memory such as stack and heap.

Ideally, the monitor program should have no intrusion on the target program. Achieving this

clean behavior is not always feasible; especially when a monitor program is designed to depict precise

execution properties and behaviors. Often, the accuracy and reliability of these monitors increases

whenever their intrusion on the execution of the target program decreases.

59

For Alamo and its extension AlamoDE, standalone target programs are dynamically loaded into

a separate execution environment within the virtual machine process, see Figure 5.1 above. This type

of in-process but separate execution environment is needed for many reasons:

1. No intrusion on the target program space. Each loaded program has its own execution

environment

2. No naming conflicts between the variables of the monitor and target programs

3. Simple loading and unloading mechanism that allows the ability to load more than one

program within the same monitoring session

4. Simple and fast access features—no operating system is involved and no system calls are

used. Often, in-process is much faster than inter-process communication even when processes

reside on the same machine

Alamo’s dynamic loading and execution model minimizes the prospect that a depicted behavior

is due to the act of monitoring instead of the actual target program behavior. This provides an ideal

model for debugging.

5.3.3. Synchronous Execution

As it was mentioned in Section 5.1, Alamo provides synchronous and not simultaneous

execution mechanism. This allows easy manipulation of the information obtained from the target

program. The interpreter of the target program suspends before it reports execution events to the

monitor program based on the monitor’s current request. This allows the monitor program to utilize

access functions to further investigate the execution state of the target program after every reported

event. For example, the monitor program is able to look up the target program’s state such as global

and local variables, keywords, and data structures. Furthermore, while the target program is stopped,

the monitor program is safely able to modify the set of monitored events before the next resumption

of the target program’s execution.

5.3.4. In-process Execution Model

Alamo’s event-driven monitoring provides a shared address space, but independent execution

model where the monitor program is separate from the target program. Each program has its own

control flow; only one of the two programs is running at any point in time. This execution model has

several advantages:

60

1. It provides a simple communication mechanism that allows the monitor program full access to

the target program space. This simplicity allows for complicated communication patterns that

otherwise would not be considered for reasons of performance

2. It simplifies the process of writing general execution monitors that can be applied to different

programs easily

3. It allows simple management for the monitored events and state of the monitored program,

because of the synchronization between the monitor program and the target program.

4. It provides each program with its own memory region. Memory allocations in the monitor

program do not affect memory in the target program and vice versa. This memory

independence also affects the garbage collector behavior

5. The in-process execution model excludes any operating system involvement that might slow

down any related operation

5.4. High-Level Execution Monitoring

Alamo provides a programmer with high level primitives that make programming a monitor as

simple as any other programming task. This following three sub-sections discusse Alamo’s features

such as event masking, loading the target program, and activating the target program.

5.4.1. Event Masking

Alamo supports a total of 118 kinds of events. Alamo’s events consist of a tuple that pairs a code

with an associated value. The event code represents the kind of action occurring in this execution of

the target program, whereas the event value represents a relevant value related to that action. For

example, if the event code is E_Assign, then the event value represents the string name of the

variable that is to be assigned. If the event code is E_Line, then the event value represents the actual

source code line number that is just about to execute.

The monitor program may receive millions of events from the execution of a small program. An

event filtering mechanism is needed to optimize the monitoring process. Alamo introduced the notion

of event mask, a dynamic set of event codes used to filter the target program events before they are

reported back to the monitor program. The event mask provides a simple but dynamic control over

the execution of the target program and its prospective events. It reduces the huge volume of reported

events to the ones that are of interest to the monitor program. This helps build more efficient task-

oriented monitor programs.

61

5.4.2. Loading the Target Program

An execution monitoring task starts by loading the target program. A target program is loaded

and initialized within Unicon’s virtual machine using the EvInit() library primitive, which loads and

initializes the target program. It takes the target program name along with its list of arguments, and an

optional stack, string-heap, and block-heap sizes. When this function executes, it sets the keyword

&eventsource with a pointer to the loaded program space—a structure that maintains the loaded

program execution state. Figure 5.2 shows a monitoring template that monitors procedure and method

activates of call and return.

 5.4.3. Activating the Target Program

Alamo’s execution and monitoring control is event-driven, a programming model that captures

the execution properties of the target program using events or sensors. The primary primitive in the

activation process is EvGet(), which resumes the execution of the target program. This primitive

allows the monitor program to specify the set of requested events before the next resumption of the

target program. The EvGet() primitive activates the target program up until the next available event.

Internally, it activates the co-expression currently pointed at by the keyword &eventsource. When a

target program is activated, it runs until an event is encountered that is of interest to the monitor

program. The interpreter of the target program reports the next available event code to the monitor

program as a return value from the EvGet() primitive, and it fails when there are no more events and

the program terminates. This simple function call interface allows even novice programmers to write

Figure 5.2. Sample Alamo Monitor

$include "evdefs.icn"

link evinit

procedure main(args)

 local eventmask

 EvInit(args)

 eventmask := cset(E_Pcall || E_Pret)

 while event := EvGet(eventmask) do {

 case event of {

 E_Pcall:{ }

 E_Pret: { }

 }

 }

end

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

62

simple execution monitors. A programmer can always access the last reported event code and value

using the keywords &eventcode and &eventvalue respectively.

The monitor program can resume the execution of the target program millions of times and the

user may interact with the monitor program to control the execution of the target program. When the

monitor program receives a specific event, it may evaluate the received event and perform one or

more of the following activities:

1. Reactivate the target program for the next event: perform its next call to the EvGet() primitive

2. Modify the set of requested events

3. Inspect further the state of the target program through high level state access primitives,

4. Forward the received event into one or more external monitors

5. Terminate the target program.

5.5 Limitations

Utilizing the Alamo monitoring framework as a debugging framework showed that it endures

some limitation. These limitations are:

1. Did not allow a monitor to change local variables in the target program

2. Did not support syntax monitoring—needed for some of the automatic debugging needs

3. Did not handle signals gracefully

4. Frequent context switches; lightweight plus high occurrence rate accumulates to performance

problem.

5. More filtering needed before the event is reported

6. Did not take full advantage of the in-process architecture, for example stack trace

These issues were addressed in Chapters 6 and 7.

63

Chapter 6

AlamoDE: Alamo’s Extensions for Debugging Support

AlamoDE is an extension to the Alamo framework that enables debugging tools and techniques

to be written at a high level of abstraction. AlamoDE adds to the original Alamo framework new

features that:

1. Include debugging-oriented virtual machine instrumentation

2. Support additional execution state inspection and source code navigation, and

3. Provide debugging tools with the ability to change the execution state by safely assigning to a

buggy program’s variables and procedures

This chapter provides an overview of the implementation of the most important underlying

extensions. Some of these extensions are general additions to the Unicon virtual machine and its

runtime system; in favor of the AlamoDE, while the rest are extensions to the Alamo monitoring

framework. All sections, except section 6.1, are implemented for this dissertation. The work

described in Section 6.1 was originally done by Griswold and Townsend, and later adapted and

extended by Jeffery [108]. This chapter is based on material from [119].

6.1. Virtual Machine Instrumentation

Event-based debugging support needs instrumentation, which can be inserted into the source

code, the bytecode, or the virtual machine itself. Implicit instrumentation within the virtual machine

and its runtime system provides a simple mechanism for getting execution events out of a running

program. However, instrumentation always incurs overhead in space and processing time. Unicon has

a small virtual machine (about 700KB with the instrumentation). A top priority for Unicon’s implicit

instrumentation is to minimize the processing time overhead cost, especially for unmonitored

execution.

Originally, Alamo was an optional extension to the Icon virtual machine, because Alamo’s

instrumentation imposed a cost even when monitoring was not being performed. In Unicon, a means

was developed to include Alamo at very low cost (other than code size) in the production VM. This

integration allows the debugger to run on the virtual machine synchronously along with the buggy

program, which is the only one affected by the instrumentation.

64

AlamoDE maintains two versions of 30 runtime functions in the binary executable VM that

contain instrumentation. One version is uninstrumented and used in any unmonitored execution; the

other version is instrumented and used when a program is monitored. Not all of the instrumented

functions are used when the program is under monitoring; a dynamic binding associates the

instrumented or uninstrumented function with the current execution state based on the current event

mask, which is specified by the debugger. A table maps event codes into their instrumented functions.

Whenever an event is added to the monitored events (event mask), the related instrumented function

is used. If an event is removed from the event mask, the original uninstrumented version of the

function is restored.

Inside the Unicon virtual machine source code, the name of the instrumented function uses the

suffix ―_1‖, whereas the name of the uninstrumented version of the same function uses the suffix

―_0‖. Functions that contain instrumentation use macros to maintain one copy of the source code,

which simplifies the maintenance effort. Using this method of dynamic binding, the instrumentation

imposes no cost on the execution time of the virtual machine until the program is debugged or

monitored, and the only instrumented functions used are the ones relevant to the currently monitored

events, which are specified by the event mask and customized by the debugging tool and the

programmer.

6.2. Inter-Program Variable Safety

In order for a debugging tool to be able to change the value of a variable inside a buggy program,

the tool must have access to the state of the buggy program. The debugging tool and its buggy

programs are loaded into different co-expressions inside the same virtual machine. It is possible for

one of the co-expressions to obtain a reference for a variable that is either on the stack, in the static

data section, or in the heap of the other co-expression. While the first co-expression is trying to

change a variable in the second co-expression, a context switch may allow control to be transferred to

the second co-expression. A memory violation might occur if the second co-expression executes

further while the first co-expression has a reference to a local variable; a reference to a variable that

lives on the stack might become invalid. For example, this can happen if the procedure returned and

its activation record is popped off the stack. Since co-expressions are synchronous this is admittedly

an unlikely occurrence that would only be caused by a deliberate adversary.

The implemented solution is a trapped variable technique [109]. Trapped variables are not new

to the Icon and Unicon implementation. For example, some keywords such as &trace require special

checking before they are assigned. However, this dissertation presents the implementation of a special

65

case of trapped variables between simultaneously executed co-expressions. Whenever one co-

expression obtains a reference to the state of another co-expression, a trapped variable block is

allocated and the assignment uses a reference to this trapped variable to ensure that no context switch

ever occurs between the time the reference is obtained and the variable new value is assigned.

Figure 6.1 illustrates how trapped variables are used. The first co-expression contains a reference

to a trapped variable block, which references the actual variable in the second co-expression. This

new block holds information about the current number of context switches between the two co-

expressions, see Figure 6.3. This number is compared to the very recent one just before writing to that

variable. If there is any difference between the number of context switches when the reference was

obtained and when the reference is written, then this technique detects the invalid assignment and

issues a runtime error. This newly introduced trapped variable block is allocated using a new macro

described in Figure 6.4.

This new technique produces a runtime error if a monitor deliberately invokes the subject

program, which can only happen if a context switch occurs in the middle of an assignment to a

monitored trapped variable. Figure 6.2 shows that this critical section can occur inside an Alamo

monitor in unlikely scenarios. The statement calls EvGet() and transfer control to the buggy program

between the time the variable x is referenced and its assignment, but it is not easy. Not surprisingly,

the code for a normal debugger does not do any such thing. The safety feature was added to the

language to extend the variable() function to produce references to local variables while a program is

paused.

Figure 6.1. Trapped Variable Implementation

B. The debugger got a

 reference to variable x on

 the target program’s stack

A. The debugger & target

 program, each inside a

 separate thread

D. The assignment has been

 made and x became x’

 EvGet ()

 Event

Debugger’s

 Stack

C
o

n
te

x
t

 S
w

it
ch

Target’s

Stack

x

 EvGet ()

 Event

Debugger’s

Stack

C
o

n
te

x
t

S
w

it
ch

Target’s

Stack

x

 EvGet ()

 Event

 Debugger’s

 Stack

C
o

n
te

x
t

S
w

it
ch

Target’s

Stack

x’

 EvGet ()

 Event

Debugger’

Stack

C
o

n
te

x
t

S
w

it
ch

Target’s

Stack

x

Trapped

 x

C. The reference is made

 through a trapped variable

66

Figure 6.2. Sample expression where assignment can be violated

1(variable("x", &eventsource, 1), EvGet()) := 5

Figure 6.3. The New Data Structure Introduced for the Trapped Variable

#ifdef EventMon
struct b_tvmonitored { /* Monitored variable block */
 word title; /* T_Tvmonitored */
 word cur_actv; /* current co-expression activation */
 struct descrip tv; /* the variable in the other program */
 };
#endif /* EventMon */

 1
 2
 3
 4
 5
 6
 7

Figure 6.4. The Allocation Macro Introduced for Trapped Variables

#ifdef MultiThread
 alctvtbl_macro(alctvtbl_0,0)
 alctvtbl_macro(alctvtbl_1,E_Tvtbl)
#else /* MultiThread */
 alctvtbl_macro(alctvtbl,0)
#endif /* MultiThread */

#ifdef EventMon
#begdef alctvmonitored_macro(f)
/*
 * alctvmonitored - allocate a trapped monitored variable block in the block
 * region. no need for event, unless the Monitor is a TP for another Monitor.
 */

struct b_tvmonitored *f(register dptr tv, word count)
 {
 tended struct descrip vref = *tv;
 register struct b_tvmonitored *blk;

 AlcFixBlk(blk, b_tvmonitored,T_Tvmonitored);
 blk->tv = vref;
 blk->cur_actv = count;
 return blk;
 }
#enddef

alctvmonitored_macro(alctvmonitored)
#endif /* EventMon */

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

67

6.3. Syntax Instrumentation

Unicon’s source code information, such as line numbers and file names, is already built into a

sparse table compiled by the linker as part of the executable binary format—named bytecode or

icode. The tables associate each Interpreter Program Counter (IPC) with its corresponding line

number and file name. These tables are employed by Alamo to obtain source code information based

on the current IPC, which points to the current virtual machine instruction at which the target program

is stopped.

Unicon’s bytecode executes as a sequence of virtual machine instructions. Like most binary code

formats, the bytecode formerly contained no information about the actual syntax of the source code.

However, some automatic debugging facilities need information about the syntax of the running

program. For example, an automated debugging technique that locates frequently failed loops needs

to know when the execution of the buggy program enters and leaves a loop and what type of loop it

is; such as a while loop.

The solution is to add a new pseudo instruction that is managed by the translator and the linker.

The new Op_Synt syntax pseudo instruction extends the line#/column# table with information about

the syntax. It is a reasonable solution because the only cost is a small increase in the size of the table.

The cost of retrieving the syntax information from the table is paid for only when a program is

monitored and that information is needed.

The line#/column# table was transformed into a line#/column#/syntax table without altering its

position in the bytecode files. See Figure 6.5. The table entry is a 32-bit integer; the 16 most

significant bits were for the column number and the 16 least significant bits were for the line number.

The maximum possible line/column number is 65535, which is more than is needed for a column

Figure 6.5. Unicon's Line/Syntax/Column Table

11-bit

Column Number

16-bit
 Line Number

5-bit

Syntax Code

32-bit
Interpreter Program Counter (IPC)

 B. Modified table field layout

16-bit
Column Number

16-bit
 Line Number

32-bit
Interpreter Program Counter (IPC)

A. Original table field layout

68

number. AlamoDE changes the column number bits to be the 11 most significant bits, and the

remaining 5 bits are used for syntax information. The new design reduces the maximum possible

column number to 2048, which is still more than enough for a column number in handwritten source

code. The new 5-bit syntax code can hold up to 32 different syntax indicators. Table 6.1 includes the

currently supported syntax codes in the Unicon virtual machine.

The newly added pseudo-instruction only appears in the human readable object files (named

ucode) and is used by the linker while generating the executable bytecode. Figure 6.7 shows the

automatically generated ucode of the program presented in Figure 6.6. Part A is the ucode file before

the syntax instrumentation, whereas part B is the ucode file after the syntax instrumentation.

Figure 6.6. Sample Unicon Program

procedure main(arg)
 local i := 1
 while i < 10 do{
 write("Hello World !!!")
 i +:= 1 }
end

1
2
3
4
5
6

Table 6.1. Syntax Events and Codes

Syntax String Code Integer Code

unidentified syntax any 0

entering case expression case 1

exiting case expression endcase 2

entering if expression if 3

exiting if expression endif 4

entering if/else expression ifelse 5

exiting if/else expression endifelse 6

entering while loop while 7

exiting while loop endwhile 8

entering every loop every 9

exiting every loop endevery 10

entering until loop until 11

exiting until loop enduntil 12

entering repeat loop repeat 13

exiting repeat loop endrepeat 14

entering suspend loop supend 15

exiting suspend loop endsuspend 16

69

Figure 6.7. Sample ucode Format Before and After the Syntax Instrumentation

version U9.0.00
impl local
global 1, 0,000005,main,1
proc main
 local 0,001000,arg
 local 1,000000,i
 local 2,000000,write
 con 0,002000,2,10
 con 1,010000,15,110,145,154,
 154,157,040,127,157,162,
 154,144,040,041,041,041
 con 2,002000,1,1
 declend
 filen test.icn
 line 1
 colm 11
 mark L1
lab L2
 line 2
 colm 5
 mark0
 pnull
 var 1
 int 0
 line 2
 colm 13
 numlt
 unmark
 mark L2
 mark L5
 var 2
 str 1
 line 3
 colm 13
 invoke 1
 unmark
lab L5
 pnull
 var 1
 dup
 int 2
 line 4
 colm 10
 plus
 asgn
lab L3
 unmark
 goto L2
lab L4
 line 2
 colm 5
 unmark
lab L1
 pnull
 line 6
 colm 1
 pfail
 end

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

A. Sample ucode without Syntax Info

version U9.0.00
impl local
global 1, 0,000005,main,1
proc main
 local 0,001000,arg
 local 1,000000,i
 local 2,000000,write
 con 0,002000,2,10
 con 1,010000,15,110,145,154,
 154,157,040,127,157,162,
 154,144,040,041,041,041
 con 2,002000,1,1
 declend
 filen test.icn
 line 1
 colm 11
 synt any
 mark L1
lab L2
 line 2
 colm 5
 synt while
 mark0
 pnull
 var 1
 int 0
 line 2
 colm 3
 synt any
 numlt
 unmark
 mark L2
 mark L5
 var 2
 str 1
 line 3
 colm 13
 synt any
 invoke 1
 unmark
lab L5
 pnull
 var 1
 dup
 int 2
 line 4
 colm 10
 synt any
 plus
 asgn
lab L3
 unmark
 goto L2
lab L4
 line 2
 colm 5
 synt endwhile
 unmark
lab L1
 pnull
 line 6
 colm 1
 synt any
 pfail
 end

1
2
3
4 5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

B. Sample ucode with Syntax Info

New

New

New

New

New

New

New

T
h
e
 w

h
ile

 l
o
o
p

 (
c
o
n
d

it
io

n
 +

 b
o
d
y
)

70

Part B of Figure 6.7 shows the new pseudo-instruction synt added to the ucode after the

originally implemented line and colm (column#) pseudo-instructions. The binary executable is

assembled from one or more ucode files using the linker. The linker processes the synt pseudo-

instruction by inserting the syntax code specified by its operand into the line#/column#/syntax table.

AlamoDE presents syntax information as a new selectable event code E_Syntax and its related

event value is the syntax code, see Table 6.1. A monitor program can inquire the current syntax name

at any time using the newly added keyword &syntax. This keyword’s presence is limited to the

monitored program, where it is accessed using the Alamo keyword() function.

Figure 6.8 shows a sample monitor program that uses the new E_Syntax event. This monitor

prints the line number and syntax name for every executed source line. The E_Line event code is

reported whenever the execution changes into a new source line. This program also prints the line

number and syntax name for every modified syntax structure. The E_Syntax event code is reported

whenever the execution changes into a new syntax construct.

Figure 6.8. Sample Syntax Monitor

$include “evdefs.icn”

link evinit

link syntname # needed for the library primitive syntax()

procedure main(args)

 local eventmask, synt_code, synt_name, line

 EvInit(args)

 eventmask := cset(E_Line || E_Syntax)

 while EvGet(eventmask) do{

 case &eventcode of {

 E_Line:{

 synt_code := keyword(“&syntax”, Monitored)

 synt_name := syntname(synt_code)

 write(“line # : ”, &eventvalue,” , syntax name is :”, synt_name)

 }

 E_Syntax:{

 line := keyword(“&line”, Monitored)

 synt_name := syntax(&eventvalue)

 write(“syntax change at line # : ”, line,” new syntax: ”, synt_name)

 }

 }

 }

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

71

6.4. High-Level Interpreter Stack Navigation

The Unicon language provides some reserved global names prefixed with ampersand (&) called

keywords. Some keywords are introduced by Alamo for monitoring needs. For example, the keyword

&eventsource contains a reference to the currently monitored program. Other keywords are used for

error reporting and debugging. For example, the keywords &file, &line, and &column, report the

currently executed file name, line number, and column number respectively. See Table 6.2 for more

monitoring and debugging related keywords [4,5,6]. These keywords can be inserted directly in the

source code of the buggy program for debugging with print statements and assertions.

Table 6.2. Unicon's Debugging Related Keywords

Keyword Description

Source Code Related Keywords

1 &file Reports the currently executed source file name

2 &line Reports the currently executed line number

3 &syntax Reports the currently executed syntax name

Interpreter Stack Level

4 &level Reports the current number of procedure frames on the interpreter stack

Memory Allocation Related Keywords

5 &allocated Reports the total allocations in heap, static, string, and block regions

6 ®ions Reports the current size of static, string, and block regions

7 &storage Reports the currently used memory in the static, string, and block regions

Garbage Collection Related

8 &collections Reports the number of collections in heap, static, string, and block regions

Monitoring Related Keywords

9 &eventcode Reports the code of the last reported execution event

10 &eventvalue Reports the value of the last reported execution event

11 &eventsource Denotes to the currently monitored program

Error Reporting Related Keywords

12 &errornumber Reports the current runtime error number

13 &errortext Reports the current runtime error message

14 &errorvalue Report the current runtime error value

72

The keyword() primitive is used by Alamo to access keywords that belong to the execution state

of the target program. This primitive is used to take two parameters: 1) the string name of the

keyword that a monitor is hunting for, and 2) the target program’s co-expression handle, from which

the keyword value is obtained. For example, the current file name can be obtained using

keyword(“&file”, &eventsource), whereas keyword(“&line”, &eventsource) is used to obtain the

current line number.

Originally, this primitive did not provide the ability to obtain the value of the keywords &file and

&line for procedures that have active frames on the interpreter stack, other than the top one. For

example, a source-level debugger requires this feature to facilitate a back tracing mechanism. It is

needed to provide connections between the activation records on the stack and the source code

location, file name and line number, which initiated each of these records. A mechanism that is

supported by the runtime system can avoid a huge monitoring overhead.

The extension mechanism utilizes the level of the activation record on the stack. This level is

used to obtain the activation record and read its Interpreter Program Counter (IPC), which can be used

to identify the file name and line number using a binary search algorithm, taking advantage of the fact

that these tables are already sorted based on their IPCs. This mechanism extends the keyword()

primitive with a third optional parameter, which is the level number of that procedure on the

interpreter stack. This new feature is very useful in traversing the execution stack in UDB’s

backtrace (or where) command. The default level is zero, which is the level of the most recent

procedure frame currently at the top of the stack.

For example, keyword(“&file”, &eventsource, 10) returns the file name that contains the call to

the 10
th
 outermost activation record on the interpreter stack. Similarly, keyword(“&line”,

&eventsource,10) looks up the buggy program’s call stack, and returns the line number of the

statement for which the tenth outer most activation record was instantiated. Figure 6.10 shows a

sample Unicon procedure that backtraces the stack. This procedure is called from the debugging tool

(monitor program). Figure 6.9 shows a sample output for this procedure.

Figure 6.9. Sample Stack Trace

0 # Current location is in procedure DD, test.icn:25

1 # procedure DD was called from procedure CC, test.icn:19

2 # procedure CC was called from procedure BB, test.icn:12

3 # procedure BB was called from procedure AA, test.icn:5

4 # procedure AA was called from procedure main, test.icn:29

 1

 2

 3

 4

 5

73

6.5. Signal Handling

Signals are interrupts sent to the process by the operating system. Some signals are fatal, while

others can be ignored or handled by the process using dedicated signal handlers. In Alamo’s thread-

based monitoring model, the operating system treats the virtual machine as one process, but at any

point in time, only one of the multiple loaded programs is running. This means receiving a signal and

handling it depends on which program is holding the execution control when the signal is issued and

whether the signal is trapped by the signaled program or not.

If the virtual machine has only one loaded program, then the signal is handled only if that

program already has a trap for it. Otherwise, the signal’s default action is performed. This was the

original design consideration by the Unicon virtual machine and its runtime system. However, a new

design is needed for multiple programs running synchronously within the same virtual machine. This

new design is based on whether the signaled program is a parent or a child. If a child program

received a signal that is not handled or trapped, then this child program is terminated and execution

Figure 6.10. Sample Procedure that Backtraces the Current Stack

procedure backtrace()

 local frame, level, fname, line, curpname, pname

 frame:=0,

 level := keyword("&level", Monitored)

 curpname := image(proc(Monitored, 0))

 fname := keyword("&file", Monitored)

 line := keyword("&line", Monitored)

 write(frame||" # Current location is in "|| curpname||", "||fname||":"||line)

 frame +:= 1

 while frame < level do{

 pname := image(proc(Monitored, frame))

 fname := keyword("&file", Monitored, frame)

 line := keyword("&line", Monitored, frame)

 write(frame||" # "||curpname||" was called from "||pname||", at "||fname ||":"|| line)

 frame +:= 1

 curpname := pname

 }

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

74

control is transferred back to its parent. If the parent program is the one who received the unhandled

signal, then the signal’s default action is performed regardless of its children. If this parent is the root

program in the current VM, then the complete process is terminated.

 In order for the monitor program to observe signals received by the target program, a new event

code E_Signal reports whenever a child program receives a signal that is not trapped or handled. The

value of this event is the string name of the received signal. For example, Figure 6.11 shows a

monitor program using the E_Signal event in its event mask. This program prints the string name of

the signal whenever it is reported.

Figure 6.11. Sample Monitor Program Using the E_Signal Event

procedure main(arg)

 local eventmask

 eventmask := cset(E_Signal || E_Pcall)

 while EvGet(eventmask) do

 if &eventcode === E_Signal then

 write(“The child program received the signal : ”, &eventvalue)

end

 1

 2

 3

 4

 5

 6

 7

 8

75

Chapter 7

AlamoDE: The Debugging Framework

AlamoDE is the result of recent extensions to the Alamo framework. AlamoDE provides high

level facilities for event-based debugging tools that observe, inspect, analyze, control, and change the

state and behavior of a buggy program. Its goals include:

1. The ability to write debugging tools at a high level of abstraction,

2. All the usual capabilities of classical debuggers,

3. Support for the creation of advanced debugging features such as automatic debugging and

dynamic analysis techniques,

4. The ability to debug special language features such as generators, goal-directed evaluation,

and string scanning, and

5. Extensibility that allows different standalone debugging tools to work in concert with each

other. It allows one debugging tool to forward events into another tool, whether it is real

execution and runtime events or pseudo events.

This debugging framework has been tested and refined within a multi-agent debugging

architecture called IDEA presented in Chapter 8, and an extensible source-level debugger called UDB

presented in Chapter 9. This chapter introduces various AlamoDE features, some of which are a result

of the extensions presented in Chapter 6 while others are original Alamo and Unicon features used

within the context of AlamoDE for debugging needs.

7.1. Debugging Events

Originally, Alamo provided a programmer with a wide range of events. Some events are

explicitly related to the evaluation of source code expressions, while others are implicit runtime

system events. Explicit events include:

1. Execution source code location such as line and column numbers

2. Procedure, built-in function, and operator activities such as call, return, fail, suspend, and

resume, and

3. String-scanning activities that include scanning environment creation, and position change.

76

Implicit events include:

1. Memory allocation activities, which are distinguished based on the target region (there are

string, block, and static regions), and based on the size and type of the allocated blocks,

2. Garbage collection activities, which are distinguished based on the region being collected and

the program, which has the activity that triggered the collection process,

3. Type conversions performed on parameters to functions and operators, and

4. Virtual machine instructions executed by the Icon virtual machine.

Debugging and visualization serve many common goals. For AlamoDE, the underlying

instrumentation was extended with three event types that are needed for debugging. The new events

are:

1. E_Deref reports when a variable is read (dereferenced). This event is needed to implement

watchpoints on specific variables. This event was implemented prior to the state of this

dissertation.

2. E_Signal reports when a target program receives a signal that is not trapped or handled. See

Section 6.5 for the implementation.

3. E_Syntax reports when a major syntax construct such as a loop starts or ends. This event was

inspired by the needs of automatic debugging systems [12, 110] and required that syntax

information be added to the Unicon virtual machine bytecode executable format. See Section

6.3 for more syntax instrumentation details.

Figure 7.1 shows a sample debugging loop where EvGet() is used inside the while condition.

This function keeps activating the monitored program reporting the next available event until the

monitored program is terminated. In this while loop, each reported event is filtered. The E_Line

event is used for implementing breakpoints and single stepping. It is reported whenever the execution

jumps to a new line number in the actual source code of the monitored program. E_Assign event is

reported whenever a variable is assigned. This event code is always followed by the E_Value event

that represents the assigned value. E_Deref event is reported whenever a variable is being read,

E_Spos and E_Snew relate to the string scanning environment. And finally E_Error and E_Exit are

reported whenever the target program is terminated. E_Error shows that a runtime error caused the

termination whereas E_Exit shows a normal program termination.

77

7.2. Event Filtering

Considering the many millions of events produced by AlamoDE’s detailed VM instrumentation,

which provides 121 kinds of events, an efficient filtering mechanism is needed to reduce the

monitoring time. Alamo originally used a simple bit vector called an event mask to specify event

types of interest. Later and before the start of this dissertation, the filtering was extended so that each

event type of interest could have an associated value mask, a set of event values of interest, which

further restricts whether an event is reported. Instrumentation in the virtual machine checks for

execution events in two levels. First, it checks whether the encountered runtime event is part of the

event mask. Then, it checks if there is a value mask associated with this kind of event. If so, only

those events that have values in the value mask are reported. See Figure 7.2.

The dynamicity of event mask and value mask allow a debugging tool to change and customize

the monitored events on the fly during the course of execution; any change on either of the two masks

will immediately change the set of reported events. For example, placing a breakpoint on one or more

line numbers requires the E_Line event to be a member of the event mask. The value mask provides

the ability to limit the reported E_Line events to those line numbers that have breakpoints on them.

To clear a breakpoint, a tool removes the line number from the value mask. The E_Line event is

removed from the event mask only if there are no more breakpoints and no other requests for E_Line

events by the debugging tool or any of its cooperative tools. Figure 7.3 shows a monitor program that

asks the user for a line number that is to be monitored during the execution of the target program. It

uses the value mask table with the E_Line key.

Figure 7.1. Sample AlamoDE Debugging Loop

Template of an AlamoDE event-based debugging loop

EvInit(“buggy program name and its arguments”)

while event := EvGet(eventmask, valuemask) do {

case event of {

 E_Line : { } # handle breakpoints, stepping, etc

 E_Assign | E_Value : { } # Handle assignment watchpoints

 E_Deref : { } # Handle read watchpoints

 E_Spos | E_Snew : { } # Handle string scanning environments

 E_Error : { } # Handle a runtime error

 E_Exit : { } # Handle buggy program normal exit

 }

 # Handle other debugging features such as tracing,

 # profiling and internal and external debugging tools

}

10

20

30

40

50

60

70

80

90

10

11

12

13

14

78

7.3. Execution State Inspection and Modification

AlamoDE provides facilities to inspect the execution stack, check a variable state, and acquire

information about the source code of the buggy program. It allows the monitor to control and change

the state of the buggy program by assigning to variables and redirecting procedures and functions.

The target program’s execution state and data are accessible by the monitor program. Alamo provides

two kinds of features that allow a monitor program to inquire about the execution state of a target

program. First, events that are reported based on different actions during the evaluation of the target

program. Second, a monitor program is always able to look up further information about the target

program’s state of execution using high level primitives.

7.3.1. Variables

Alamo provides several built-in functions for execution monitors. Monitor programs use these

primitives for further investigation of the target program execution state. A variable is either global,

or local including static and parameter variables. Variable names can be obtained using dedicated

primitives such as globalnames(), localnames(), paramnames(), and staticnames() [4]. A local

variable value can be obtained using the built-in function variable(name, &eventsource, level),

which returns the current value of the variable name in the frame number level of the buggy

program’s call stack. If name is a global variable or a keyword, the same function is used without the

level parameter (i.e. variable(name, &eventsource)).

Figure 7.2. AlamoDE’s Architecture

Unicon’s VM

VM

Interpreter

(Thread #1)

Target

Program

Event

Report

EvGet()

VM

Interpreter

(Thread #0)

Monitor

Program

Very Lightweight

Co-Expression

Context Switch
Virtual Machine

Instrumentation

High Level In-process Access Features

events

E

v
en

t
M

a
sk

V
a

lu
e

M
a

sk

79

The variable() function is also used by debugging tools that modify the target program’s state by

assigning to variables in the buggy program. When it is used to assign a new value to a variable in the

target program, a fourth parameter is used as a flag, see Figure 7.4. This flag is an integer value

introduced by the implementation of inter-program variable safety that is presented in Section 6.2.

When this flag is present with a value other than zero, it allows the monitor program to safely assign

to a variable in the monitored program. Otherwise, the assignment is ignored. This behavior prevents

the monitor program from modifying target program execution properties that are not valid. If a

context switch occurred between the time the variable reference is obtained and the time the

assignment is complete, this assignment will produce a runtime error and terminate the execution.

Figure 7.3. Sample Monitor Using the event mask and value mask

$include “evdefs.icn”

link evinit

procedure main (args)

 local fname, eventmask, valuemask, line, ans, flag

 EvInit(args) | stop(" *** cannot initialize monitored program *** ")

 eventmask:= cset(E_Line)

 valuemask:= table()

 write("Please enter a line number you want the execution to stop at:")

 line := integer(read())

 valuemask[E_Line] := set(line)

 while EvGet(eventmask, valuemask) do {

 fname := keyword(“&file”, Monitored)

 write(" ==> reaching line number "|| &eventvalue || " in file ", fname)

 write("would you like to stop at another line (Y/n):")

 if /flag & (*(ans:=read())=0 | not(ans[1] == ("n"|"N"))) then {

 write("Please enter a line number :")

 line := integer(read())

 insert(valuemask[E_Line], line)

 }

 else

 flag := 1

 }

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

80

7.3.2. Procedures and Stack Frames

Activation records (frames) on the stack are distinguished by a positive integer called level; the

most recent stack frame is at level zero, whereas the highest level value is for the activation record of

procedure main(). The proc() built-in function was extended for AlamoDE to allow the debugging

tool to identify which procedure is currently active on a specific stack level. For example,

proc(&eventsource,7) returns a pointer to the procedure or method, which lives on the seventh outer

most level of the buggy program’s call stack. The depth of the call stack can be checked using the

keyword &level. The keyword(“&level”, &eventsource) returns the number of frames currently on

the buggy program’s interpreter stack.

Furthermore, the Unicon language allows programmers to replace a procedure with another

procedure during the execution. This feature is very useful for some debugging tools. For example, if

the buggy program contains two versions of a sorting algorithm, in different procedures, the debugger

can replace one by the other on the fly during the execution.

The procedure or method pointer obtained by the proc() function allows a debugging tool to

place a call to that procedure as an inter-program procedure call. This mechanism is very useful for

interactive source-level debuggers. For example, the buggy program may contain a procedure that

prints the elements of a linked list, which is being debugged by the user. The debugger can place a

call to that procedure, from any point during the debugging session, without modifying the buggy

program source code. Moreover, a source-level debugger may incorporate general service procedures

that can be plugged in to the buggy program source code on the fly during the debugging session.

For example, the assignment in Figure 7.5 replaces the buggy program’s procedure sort1() with

the debugger service procedure qsort(). Of course, the two procedures’ formal parameters must be

compatible in their order and type.

variable(“sort1”, &eventsource) := proc(“qsort”, ¤t)

Figure 7.5. Modifying Procedures in the Buggy Program

variable(name, &eventsource, level, flag) := value

Figure 7.4. Assigning Variables in the Buggy Program

81

7.3.3. Executed Source Code

Unicon’s executable bytecode contains information about the linked source files including any

used library modules. For AlamoDE, a class library was developed to analyze the bytecode and

generate a list of its source file names, and their static source code properties such as packages,

classes, global variables, and user defined functions. Another class library maintains a list of all

source files in use. Those library classes provide a debugging tool with the buggy program’s source

code static information. Furthermore, the debugging tool can inspect the currently executed source

code using runtime events and high level functions such as the keyword() function discussed in

Section 7.3.2. For example, the E_Line and E_Syntax events report the currently executed line

number, and source code syntax construct respectively.

7.4. Advanced Debugging Support

AlamoDE provides underlying infrastructure for automatic debugging, dynamic analysis,

profiling, and visualization.

7.4.1. Multitasking

AlamoDE provides a multitasking mechanism for various debugging tools and techniques. A

debugging tool runs as the main co-expression inside the virtual machine. A buggy program and

secondary standalone debugging tools can be loaded into different co-expressions controlled by the

debugger. A debugger transfers control to the buggy program using the EvGet() function. Then the

buggy program executes until there is some event that is of interest to the debugger. EvGet() requests

the next event by resuming the program that is denoted by &eventsource. An AlamoDE-based

debugging tool can debug multiple buggy programs in one session. This can be used to perform

advanced debugging techniques such as relative debugging [54] or delta debugging [21]. Switching

between different programs is accomplished by changing the value of &eventsource before the next

call to EvGet().

7.4.2. Event Forwarding

A monitor coordinator allows different debugging tools to work in concert during the same

monitoring activity, playing the role of a central server for other debugging tools. The debugger and

its loaded tools work synchronously on the same buggy program. One debugging tool can use the

EvSend() primitive to forward an event to another tool running on the same virtual machine. This

primitive forwards an event code and its corresponding value into another tool. The forwarded event

82

is received by the other debugging tool as it requests the events using the typical EvGet() primitive.

Moreover, this forwarded event code and value do not need to be any real event reported from the

target program. Sometimes, this primitive is used to provide other monitoring tools with artificial or

pseudo events, which can be used as a communication protocol between various debugging tools.

Additionally, the primitive eventmask() provides the ability for a monitoring tool to read or

modify the set of events requested by another monitoring tool. This feature is important for

performance reasons. The main debugging tool, which is also called the debugging coordinator, can

utilize monitoring information from secondary tools to optimize the number of monitored events

applied on the target program. Furthermore, this main debugging tool needs to know the kinds of

events that are requested by each of the secondary tools in order to forward them.

7.4.3. Custom Defined Debugging Tools

AlamoDE puts execution events in the hands of programmers, who can use events, event

sequences, and event patterns to write their own automated debugging and dynamic analysis tools.

For example, the code in Figure 7.7 shows a toy example of an AlamoDE-based debugging tool. It

captures the number of garbage collections that happen during the execution of a buggy program, and

finds the total and average of collected data from the string and block regions. This provides a rough

measure of whether the buggy program is mostly doing string processing or not. This example

program can be used as a standalone tool, or loaded into another debugging tool on the fly without

any source code modification at all.

Secondary Debugging
Tool #1

Secondary Debugging
Tool #M

Main Debugging Tool
(A Debugging Coordinator)

Buggy Program
#1

Buggy Program
#N

EvGet() EvGet()

EvGet()

Event Event

EvSend()

Figure 7.6. AlamoDE Debugging Capabilities

83

$include "evdefs.icn"

link evinit

class Example (

 eventMask, gc, lastStr, lastBlk, collectedStr, collectedBlk, avgStr, avgBlk

)

method handle_E_Collect()

 local Storage := []

 gc +:= 1

 every put(Storage, keyword("storage", Monitored))

 lastStr := Storage[2]; lastBlk := Storage[3]

end

method handle_E_EndCollect()

 local Storage := []

 every put(Storage, keyword("storage", Monitored))

 collectedStr +:= lastStr - Storage[2]; collectedBlk +:= lastBlk - Storage[3]

end

method analyze_data()

 if gc = 0 then return 0

 avgStr := collectedStr / gc; avgBlk := collectedBlk / gc

end

method write_data()

 write(" # Garbage Collections : ", gc)

 write(" Collected Strings : ", collectedStr,” Avg :”, avgStr)

 write(" Collected Blocks : ", collectedBlk,” Avg:”, avgBlk)

end

initially()

 eventMask := cset(E_Collect || E_EndCollect)

 gc := 0; collectedStr := collectedBlk := 0.0

end

procedure main(arg)

 EvInit(arg)

 obj := Example()

 while event := EvGet(obj.eventMask) do {

 case event of {

 E_Collect: { obj.handle_E_Collect() }

 E_EndCollect: { obj.handle_E_EndCollect() }

 }

 }

 obj.analyze_data()

 obj.write_data()

end

Figure 7.7. An AlamoDE Debugging Agent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

84

Part III

Very High Level Extension Mechanism

85

Chapter 8

IDEA: A Debugging Extension Architecture

This chapter presents the Idaho Debugging Extension Architecture (IDEA). IDEA’s extensions

are called agents. IDEA’s agents are event-driven task-oriented program execution monitors that

embody lightweight dynamic analyses. IDEA’s agents are written and tested as standalone programs,

after which they can be loaded and used on the fly from within the IDEA-based source-level

debugger (external agents), or integrated as permanent features into the debugging core (internal

agents). The IDEA-based source-level debugger provides a simple interface to load, unload, enable,

or disable debugging agents on the fly, and the user can be selective about where, when, and which

agent(s) to use. This chapter is based on material from [120].

8.1. Debugging with Agents

Conventional debuggers allow users to explore their debugging hypotheses using manual

investigation. Debugging with agents leverages the conventional debugging process by empowering

the user with more tools to inspect the state of the buggy program. For example, many functions

return a specific value when they encounter an error or fail to accomplish their job. An agent can

automatically catch any of these failed functions and save the user the time that can be spent during a

manual inspection. In general, IDEA’s agents may retain information beyond the current state of

execution and perform automatic debugging and dynamic analysis techniques that could be supported

by trace-based debuggers such as ODB [47, 48]. Using IDEA, it is easy to incorporate debugging

agents that capture specific execution behaviors such as:

1. Loops that iterate N times, for some N >= 0

2. Variables that are read and never assigned or assigned and never read during a particular

execution

3. Expressions such as subscripts that fail silently in a context where failure is not being checked

4. Variables that change their type during the course of execution

5. A trace of variable states, which allows users to trace backward and see where a specific

variable was assigned long before it is involved in a crash

86

8.2. Design

IDEA features novel properties that distinguish it from other debugging architectures. First, it

provides two types of extensions: dynamic extension on the fly during the debugging session and

static extension supported by formal steps to migrate and adopt standalone agents as permanent

debugging features—statically linked into the source code of the debugger. Second, it simplifies the

extensibility of a source-level debugger, which provides an interactive user interface. This interface

allows simultaneous agents to be loaded and managed during a debugging session. Finally, this

simple extensibility may encourage users to write their own agents and incorporate them into a typical

source-level debugging session.

IDEA’s agents are able to analyze execution properties and behaviors based on runtime

information, which they collect while they sit enabled in the background of the debugging session.

Sometimes, the user may limit an agent to a specific part of the execution by manually enabling and

disabling it between different execution points. Other times, the agent is programmed to automatically

trigger information gathering based on some specific runtime properties. For example, an agent can

automatically watch all while loops or just the one within a specific procedure or method.

In general, unless an agent depends on information prior to its load time, the user does not need

to rerun the program whenever a decision is made to incorporate the agent into the debugging session.

In contrast, most static and dynamic analysis tools and libraries must be linked in advance into the

source code of the buggy program, or initialized at the start of the host debugger. Moreover, often

these static and dynamic analysis tools provide no means for the user to control the part of the

program or the execution interval where the information should be collected or analyzed.

8.3. Implementation

IDEA extends the debugging core of a source-level debugger with two major components:

1. An evaluator that provides the main event filtering and forwarding mechanism, and

2. An agent interface that facilitates and provides the programming interface for external and

internal extensions.

IDEA’s evaluator is comprised of two components that make the source-level debugger an event

coordinator for the debugging agents; Internals and Externals. These components are abstracted by

objects, which serve as Proxies for external agents or as Listeners in the case of internal extensions.

These objects are plugged in to the main debugging loop as extra listeners on the runtime events.

87

IDEA manages and coordinates all extension agents and forwards received events from the

buggy program into active agents based on their interest. Each agent:

1. Provides the evaluator with its set of desired events in the form of an event mask

2. Receives relevant events from the evaluator

3. Performs its debugging mission, which may utilize execution history prior to the current

execution state, and

4. Presents its analysis results back to the user.

Figure 8.1 shows IDEA’s architecture. When the evaluator receives an event from the buggy

program, it forwards the received event to those agents that are enabled and requested this event in

their event mask. For internal agents, this takes the form of a call to a listener method, while for

external agents it takes the form of a context switch, which the agent sees as a return from its EvGet()

function. EvGet() is the AlamoDE primitive that resumes the buggy program until the next available

event. In case of external agents, EvGet() resumes IDEA’s evaluator.

8.4. Source Code

IDEA’s debugging core is comprised of five basic classes. One class is general for all extension

agents, two classes are dedicated for external extensions, and the other two classes are dedicated for

internal extensions. Figure 8.2 shows IDEA’s UML diagram.

Figure 8.1. IDEA's Architecture

88

Figure 8.2. IDEA's UML Diagram

89

1. Agent class handles all extension agents’ basic features such as enabling, disabling, and

constructing their event mask. It provides public methods such as disableAgent(name) that

disables an agent, enableAgent(name) that enables an agent, and updateMask() that checks

and updates the event mask of the target debugger whenever an agent is enabled or disabled.

2. Externals class handles the separately-compiled dynamically-loaded external debugging tools

that are loaded on the fly. It provides two public methods. The method cmdLoad()loads an

external agents’ executable and registers it on the fly under its name (the name of the

executable). The method Forward() checks all active external agents and forwards the

received event to those that acquire this event in their mask.

3. ExternalClient class handles information about external agents. Each of the currently loaded

agents has its own object, which is saved into the active clients list.

4. Internals class handles the debugging tools that have migrated to internals. It provides the

Forward() method just like the Externals class. It also provides the register() method that is

used to manually register agents as internal debugging features.

5. Listener class handles the entire migrated agents interface. An external agent must be

subclassed from this Listener class before it can be registered as internal built-in feature. This

class automatically analyzes and registers the agent’s features.

8.5. Extensions

Different agents can be loaded and active, and each agent receives different runtime events based

on their own event mask. For every received event, IDEA’s evaluator checks for any enabled internal

and external agent; it forwards events to the enabled ones based on their event mask. Newly activated

agents start receiving relevant events right after their activation. Disabled agents receive no events

until they are enabled explicitly by the user. An extension agent may change its event mask during the

course of execution. A change on any agent’s event mask immediately triggers an update to the event

mask of the debugging core and alters the set of events received by the debugging core and forwarded

to the agents.

8.5.1. Sample Agent

The code provided in Figure 8.3 shows an example IDEA-based agent that captures the number

of calls of user-defined procedures, methods, and native built-in functions, and finds the ratio for each

call type. This provides a rough measure of the degree of VM overhead for a particular application.

90

The class Example() contains three kinds of methods summarize the potential functionalities

provided by a debugging agent. Agents that follow this method naming convention can be registered

automatically with the library of internal agents. Otherwise, agents can be registered manually. For

more information about the migration process see Section 8.5.4. In contrast, external agents require

no special formatting and no pre-registration.

Figure 8.3. An IDEA-based Agent Prototype

$include "evdefs.icn"

link evinit

class Example(

 eventMask, pcalls, fcalls, prate, frate)

 method handle_E_Pcall()

 pcalls +:= 1

 end

 method handle_E_Fcall()

 fcalls +:= 1

 end

 method analyze_info()

 total := real(pcalls + fcalls)

 prate := pcalls / total * 100

 frate := fcalls / total * 100

 end

 method write_info()

 write(" # pcalls = ", pcalls, " at rate :", prate)

 write(" # fcalls = ", fcalls, " at ratio :", frate)

 end

initially()

 eventMask := cset(E_Pcall || E_Fcall)

 pcalls := fcalls := 0

end

procedure main(args)

 EvInit(args)

 obj := Example()

 while EvGet(obj.eventMask) do

 case &eventcode of {

 E_Pcall:{ obj.handle_E_Pcall() }

 E_Fcall:{ obj.handle_E_Fcall() }

 }

 obj.analyze_info()

 obj.write_info()

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Type 1: Event Handler #1

Type 3: Information Writer

Type 2: Information Analyzer

Type 1: Event Handler #2

91

1. Event handler methods whose names start with the prefix "handle_" followed by the handled

event name. Each method processes one event, (i.e. handle_E_Pcall()). The agent’s event

mask is constructed automatically based on those handler methods. They may collect or

analyze information based on the received events.

2. Information analyzer methods whose names start with the prefix "analyze_" followed by any

name (i.e. analyze_info()). This method analyzes the collected information.

3. Information or result writer methods whose names start with the prefix "write_" followed by

any name. This method should write information based on the agent analyses

(i.e. write_info()).

8.5.2. External Agents

External agents can be written and tested as standalone tools, and subsequently loaded on the fly

and used together during a debugging session—no special registration and no pre-initialization is

needed. External extensions are managed by three classes: Agent, Externals, and ExternalClient.

IDEA’s external agents are loaded and controlled by its debugging core. Separately-compiled

dynamically-loaded external agents receive their information from IDEA’s evaluator, which controls

them. The external debugging agents’ standard inputs and outputs are redirected and coordinated by

IDEA’s debugging core. IDEA’s evaluator receives runtime events from the buggy program based on

the current debugging context, which includes the event masks of enabled external agents. The

Externals component multiplexes the received events between different external agents. Events are

forwarded to related active agents.

Figure 8.4. IDEA’s on-the-fly Extensions (External Agents)

B
u

g
g

y
 P

ro
g

ra
m

EvGet ()

Event

EvSend()

EvSend()

External

Agent #1

External

Agent #N

EvGet()

EvGet()

Very lightweight

Co-Expression

Context Switch

E
x

te
n

d
ed

 D
eb

u
g

g
er

(D
eb

u
g

g
in

g
 C

o
re

)

ID
E

A

92

An external agent requests events from the IDEA evaluator using the EvGet() primitive, which

transfers control from the external agent to the extended debugger, see Figure 8.4 above. EvGet() is

the same primitive that transfers control and acquires events from the buggy program when the agent

is used in a standalone mode. The Externals component forwards events to any of the external agents

using the EvSend() primitive, which is used to send the last event received by the evaluator to the

external agent. A context switch occurs whenever control transfers between the debugging core and

either a buggy program or an external agent. Event forwarding is accomplished without the

knowledge of the external agent itself, which means the external agent needs no modification to be

loaded and used by IDEA’s core.

8.5.3. Internal Agents

Besides support for whole programs as external agents, IDEA supports insertion of dynamic

analyses into the debugging core as listener agents that implement a set of callback methods. IDEA’s

debugging core implements different built-in agents for different classes of bugs. For performance

reasons, each agent has its own implementation based on the kind of events that the debugging core

must monitor in the buggy program. The Internals component handles the built-in agents. Internal

agents are called from the main debugging loop with a call to the Forward() method of the Internals

component, where internal agents are registered during initialization. The Internals component

checks which agents are active and calls the related underlying method(s) based on the event code

that is received by the debugging core. See Figure 8.5.

Figure 8.5. IDEA’s Internal Extensions (Internal Agents)

B
u

g
g

y
 P

ro
g
ra

m

EvGet ()

Event

Very lightweight

Co-Expression

Context Switch

Method

Call

Extended Debugger

(Debugging Core)

IDEA

Return

Internal

Agent #1

Internal

Agent #N

Return

93

8.5.4. Migration from Externals to Internals

External agents allow automatic debugging techniques based on various dynamic analyses to be

developed and tested easily in the production environment. Selected external agents may become

internal—built-in monitors within the debugging core for improved performance. Internal agents do

not pay the (lightweight, but still painful) cost of the context-switch communication between the

debugging core and the external agents. IDEA provides smooth migration from external agents to

internal. The first issue in migration is to accept a callback-style event listener architecture in place of

the more general main() procedure that an external agent uses from a separate thread. IDEA provides

an abstract class called Listener, which must be subclassed within the agent before the external can

become an internal. The Listener class allows the debugging core to acquire the event mask of the

migrated internal agents, and to determine which listener methods to use for the various event types.

The agent prototype discussed in Section 8.5.1 and Figure 8.3 can be used as a standalone

program or as an external agent under IDEA without any modification. In order to move such an

external agent to an internal one, the user must derive this Example class from IDEA’s Listener

abstract class and register it in the Internals class. Whenever its own event mask changes, this

abstract class helps the Internals class rebuild the event mask for the internal agents and the

debugging core using the updateMask() method in IDEA’s Agent class. This method updates the

extended debugger with the new event mask obtained from the internal agent.

An object of the newly migrated internal agent must be instantiated and inserted into the list of

clients in the Internals class. This can be done through the method register() from the Internals

class. For example, to register the prototype Example agent in Figure 8.3 as an internal agent, the

programmer has to place a call to the method register() in the Init() method of the Internals class

where the first parameter associates the agent with a formal name as a string ID during the debugging

session, and the second parameter is an object of that agent class (i.e. register(“calls”, Example())).

This is the simple automatic registration that applies for agents who follow the sample agent

convention shown in Figure 8.3 and discussed in Section 8.5.1. To register a complex agent that does

not follow this sample convention, the method register() can be called with four extra parameters to

register the method handlers, the analyzers, and the writers respectively along with agent event mask.

The new internal agent must be stripped of its main() procedure before it is linked into the

debugging core. Alamo’s EvInit() and EvGet() are no longer needed as it is already performed by the

debugging core. The mapping of events such as E_Pcall to their listener methods (handle_E_Pcall)

94

is constructed automatically when the Example() class is subclassed derived from the Listener class

provided by IDEA, see Figure 8.6.

8.5.5. Simple Agent Migration Example

Figure 8.3 showed a simple IDEA-based extension agent. Figure 8.6 shows the migration of that

agent from standalone program to IDEA internal agent. Each monitored event is mapped, in a one-to-

Figure 8.6. Sample Migrated Agent

$include "evdefs.icn"

link evinit

class Example (

 eventMask, pcalls, fcalls, prate, frate

)

 method handle_E_Pcall()

 pcalls +:= 1

 end

 method handle_E_Fcall()

 fcalls +:= 1

 end

 method analyze_info()

 total := pcalls + fcalls

 prate := pcalls / total * 100

 frate := fcalls / total * 100

 end

 method write_info()

 write(" # pcalls = ", pcalls, " at rate :", prate)

 write(" # fcalls = ", fcalls, " at ratio :", frate)

 end

initially()

 eventMask := cset(E_Pcall || E_Fcall)

 pcalls := fcalls := 0.0

end

procedure main(args)

 EvInit(args)

 obj := Example()

 while EvGet(obj.eventMask) do

 case &eventcode of {

 E_Pcall:{ obj.handle_E_Pcall() }

 E_Fcall:{ obj.handle_E_Fcall() }

 }

 obj.analyze_info(); obj.write_info()

end

$include "evdefs.icn"

link evinit

class Example : Listener (

 eventMask, pcalls, fcalls, prate, frate

)

 method handle_E_Pcall()

 pcalls +:= 1

 end

 method handle_E_Fcall()

 fcalls +:= 1

 end

 method analyze_info()

 total := pcalls + fcalls

 prate := pcalls / total * 100

 frate := fcalls / total * 100

 end

 method write_info()

 write(" # pcalls = ", pcalls, " at rate :", prate)

 write(" # fcalls = ", fcalls, " at ratio :", frate)

 end

initially()

 eventMask := cset(E_Pcall || E_Fcall)

 pcalls := fcalls := 0.0

end

procedure main(args)

 EvInit(args)

 obj := Example()

 while EvGet(obj.eventMask) do

 case &eventcode of {

 E_Pcall:{ obj.handle_E_Pcall() }

 E_Fcall:{ obj.handle_E_Fcall() }

 }

 obj.analyze_info(); obj.write_info()

end

A. Standalone External Agent B. Migrated to Internal Agent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

95

one relation, into a single method. This conventional format allows the IDEA-based debugger to

provide automatic registration for the event callback methods and the agent’s event mask. The agent’s

class has three kinds of methods that are recognized by the automatic registration process. Agents are

registered automatically with four simple steps:

1. Derive the agent class from the Listener class provided by the IDEA’s architecture. This

abstract class analyzes the derived class looking for the three kinds of event handlers. It builds

a table that maps each prospective event into its handler method, and builds the agent’s event

mask and updates the core of the extended debugger to request those events from the

execution of the buggy program.

2. Place a call to the register() method in the Init() method of the Internal class as follows:

(register("calls", Example()))

3. Strip the agent’s main procedure, and

4. Compile and link the migrated agent into the extended debugger executable.

When the process of migration has completed successfully, users can use their own agents from

within the host debugger as internal agents during the debugging session. Agents are distinguished by

their names. The user can enable or disable the agent facilities on the fly during the debugging session

by referring to their names.

8.4.6. Complex Agent Migration Example

Complex agents do not follow the naming convention discussed in Section 8.4.1. The method

names of these agents have no restriction. However, the user has to classify the agent’s methods into

handlers, analyzers, and writers. This kind of agent is registered in a similar way to the simple agents

discussed in the previous section. However, the user has to place a call to the register() method of the

Internals class with four extra parameters, which are used to register the handler methods, analyzer

methods, writer methods, and the agent’s event mask. Figure 8.7 shows the call to the register()

method that manually registers the Example class as shown in Figure 8.3.

register("calls", Example(),

 ["handle_E_Pcall()","handle_E_Fcall()"],

 ["analyze_Info"],

 ["write_Info"],

 cset(E_Pcall || E_Fcall))

Figure 8.7. Explicit Agent Registration

96

This type of registration provides users with enough freedom to write their own standalone

agents in the way they want, and allow them to integrate those as internals with the least possible

modifications. Moreover, this explicit registration does not disable the automatic registration; the

automatic registration is always applied. If there is any method that is following the naming

convention introduced earlier, they are automatically registered. This explicit registration provides an

addition on top of the automatic registration, and removes the restriction of one handler per-event

required in the automatic registration.

97

Chapter 9

UDB: The Unicon Source-Level Debugger

This chapter presents the design and implementation of UDB [121,122], a source-level debugger

for the Unicon [3, 4] and Icon [6, 7] programming languages. UDB is an event-driven agent-oriented

extensible source-level debugger. It is written in Unicon on top of the AlamoDE debugging

framework presented in Chapter 7, and the IDEA architecture presented in Chapter 8. UDB combines

classical debugging techniques such as those found in GDB with a growing set of extension agents.

Unlike ordinary debuggers, which are usually limited in the amount of analysis that they perform in

order to assist with debugging, UDB’s design and implementation proves three hypotheses:

1. A source-level debugger built on top of an event-driven debugging framework can surpass

ordinary debuggers with more debugging capabilities

2. A debugger based on a high-level framework allows an easy and efficient agent-based

extension, and

3. An agent-oriented debugger is easier to extend on the fly with new agents that utilize

automatic debugging and dynamic analysis techniques.

This chapter is based on material presented in [121, 122].

9.1. UDB’s Debugging Features

UDB provides typical debugging techniques such as breakpoints, watchpoints, single stepping

and continuing, and stack navigation. At the same time, it has a rich set of advanced debugging

features. The underlying event-driven architecture empowers UDB with advanced debugging

techniques. First, it features more powerful watchpoints that support advanced language features such

as dynamic typing and string scanning. Second, it provides tracepoints that allow the ability to trace

specific execution behaviors of procedures, built-in functions, and language operators. Finally, it

supports outstanding extensibility provided by the IDEA architecture. This allows experienced users

to write their own custom debugging agents, test them as standalone programs, and use them on the

fly during UDB debugging sessions or incorporate them into UDB’s source code as permanent

debugging features.

98

9.2. Design

UDB employs AlamoDE’s thread model of execution monitoring, where the debugger and its

buggy program are in separate threads in a shared address space. The IDEA architecture allows UDB

to provide advanced debugging features through multiple simultaneous agents. As it is stated in

Chapter 8, UDB’s extension agents are written and tested as standalone tools and then loaded and

managed on the fly by its IDEA architecture during a typical debugging session. Successful external

agents may be promoted to internal built-in features within the debugging core for improved

performance. Agents are suspended whenever a breakpoint or watchpoint is reached, and they are

resumed when the buggy program is resumed. UDB provides smooth migration from external agents

to internals. See Section 8.4 for more details on the migration procedure.

By design, most of UDB’s commands resemble those of GDB. This provides familiarity and

ease of use for programmers who switch between languages frequently. In addition to GDB’s

command set, UDB adds a handful of simple but general commands that load, unload, enable, and

disable its extension agents. This simplifies the extensibility, especially for typical users and novice

programmers who may want to benefit from existing agents.

$ udb sort

 UDB Version 1.5, January 2009.

 sort : loaded 2.5K bytes of 32-bit uncompressed icode

 1 Source file(s) found

 Type "help" for assistance

(udb) break BubbleSort

 Breakpoint set successfully in:

 1# sort.icn(5): BubbleSort(A)

(udb) run

 A =[4,1,8,9,0,6,5,7,2,3]

 Breakpoint: sort.icn(5): BubbleSort(A)

(udb) enable –agent failedloop

 The agent failedloop is enabled

(udb) cont

 loop: failed while

 sort.icn(10): while swapped ~== "true" do{

(udb) quit

 sort is running, are you sure you want to quit,(Y/n)?:y

 Thank you for using UDB, Goodbye !

$

Figure 9.1. Sample UDB Debugging Session

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

99

Figure 9.1 shows a sample UDB debugging session. The target program sorts an array of

integers using the bubble sort algorithm, which uses a while loop. Line 14 in the figure enables the

internal agent named loop to watch for while loops that iterate zero times. Then lines 17 and 18 show

the loop agent printed a message about a failed while loop detected at line 10 of the target program’s

source file named sort.icn.

9.3. Debugging Core

UDB’s debugging core provides the main debugging features and user interface. It is comprised

of four major components: 1) a console, 2) a debugging session, 3) an evaluator, and 4) a debugging

state. UDB’s debugging core manages all of the built-in classical debugging techniques, and

coordinates the operations between the extension architecture, the buggy program, and the user

interaction. Figure 9.2 shows UDB’s architecture and Figure 9.3 shows UDB’s UML diagram.

Figure 9.2. UDB’s Debugging Architecture

Very

lightweight

 co-expression

 context switch

T
h

e
A

la
m

o
D

E
 D

eb
u

g
g

in
g

 F
ra

m
ew

o
rk

Multi-Agent

Interface

Internal Library

 of Agents

Standalone

External

Agents

Return

The Extension Architecture

Debugging

Evaluator

D
eb

u
g

g
in

g
 S

ta
te

Data

Stack

Source Code

Call

Debugging Core Console

Session

Return /

Suspend

Return /

Suspend

Start /

Resume

 Start /

 Resume

Breakpoints

Watchpoints

Tracepoints

Stepping

Nexting

Built-in Agents

100

Figure 9.3. UDB's UML Diagram

101

9.3.1. Console

The top level component in UDB’s debugging core is the console. It provides a user interface

supported by a command interpreter for user control. It receives a command line from the user and

parses it into a list of tokens. The first element in the list is the UDB command followed by its

arguments. This command list is passed into the second component which is the debugging session.

The source code of this component is modeled by one class named Console.

9.3.2. Session

The second component in UDB’s debugging core is the debugging session. It initializes and

manages the state of the debugger and controls its debugging evaluator. At the start of every

debugging session, it loads the target program and analyzes its bytecode. The source code of this

component is modeled by two classes:

1. The Session class initializes the debugging state and loads the subject program. It interprets

all of the commands that are received from the console

2. The Helps class provides the basic in-line help functionalities. It reads the debugging state

and provides information about commands based on the current debugging context.

9.3.3. Debugging State.

The third component in UDB’s debugging core is the debugging state. Initially, the session

component initializes this debugging state. At the start of every debugging session, the debugging

state is loaded with the available source files and the executable’s symbol table. It analyzes the

semantic properties of global variables, packages, classes, methods, procedures, and built-in

functions. This information assists the debugger and the user with execution state inspection and

source code information. This debugging state is updated and maintained during the debugging

session based on the user interaction and the state of the buggy program. The source code of this

component is modeled by four classes:

1. The DebugState class encapsulates the entire debugging state; it has attributes and flags to

control the debugger such as what event codes and values the debugging evaluator should be

receiving from the buggy program.

2. The Icode class opens and analyzes the program’s executable virtual machine binary in order

to obtain static information about the executable program. The most important information

102

obtained is a list of all the names of the source files that are contributed to the executable,

including library files.

3. The SourceFile class opens and organizes the source files that were compiled and linked to

construct the program. It provides the ability to search and locate source lines and procedures.

4. The SymbolTable class analyzes global names found in the executable. This class maintains

the executable’s semantic properties such as global variables, procedures, packages, class, and

methods.

9.3.4. Evaluator

The final component in UDB’s debugging core is the debugging evaluator. This evaluator

provides the main event-driven debugging analysis and monitoring control. Built-in debugging

features such as breakpoints, watchpoints, tracepoints, stepping and nexting are implemented by

internal monitors that are built into UDB’s debugging core. By default, UDB’s evaluator monitors the

E_Error, E_Exit, and E_Signal events, see Table 9.1. The event masks of enabled built-in features

and extension agents are added to this set of events. On the fly, UDB’s evaluator starts asking the

buggy program about those extra events. When the evaluator receives an event from the buggy

program, first it checks whether any classical action is needed such as a breakpoint, or watchpoint.

Then it checks the extension architecture, which checks its enabled internal and external agent; it

forwards events to the enabled ones based on their event mask. The source code of this component is

modeled by seven classes; see UDB’s UML diagram presented in Figure 9.3 above:

1. The Evaluator class implements the main core of the debugging control as an AlamoDE

execution monitor. It performs many activities such as: 1) activating the subject program, 2)

collecting events out of the subject program, 3) filtering and analyzing according to the

debugging context, 4) and forwarding events to all of the classical and advanced debugging

facilities.

2. The BreakPoints class implements an event-driven breakpoint mechanism by monitoring the

E_Line execution event. Each breakpoint is represented by an instance of the Breakpoint

class. See Section 9.4.2.

3. The WatchPoints class implements a software watchpoint mechanism by monitoring

different kinds of events for different watchpoints. Each watchpoint is represented by an

instance of the Watchpoint class. See Section 9.4.3.

103

4. The TracePoints class implements an event-driven execution behavior trace by monitoring

various execution events based on the requested trace behavior. Each requested trace

represented by an instance of the Tracepoint class. See Section 9.4.4.

5. The Stepping class provides single stepping, nexting, and continuing related commands. It

monitors the E_Line execution event for some commands, while for others it monitors the

level (&level) of the stack, especially for commands such as return and next. See Section

9.4.5.

6. The Stack class provides facilities to explore the execution stack. It implements basic stack

related commands such as up, down, frame, and backtrace. See Section 9.4.6.

7. The Data class provides facilities to explore execution data and modify it. It also provides

static and semantic information about the executable. For example, it implements basic UDB

commands such as print, list, and src. See Section 9.4.7.

9.3.5. Generators

The debugging Session and the debugging Evaluator are generators, expressions that suspend

values to the caller and are resumed to produce additional values [4, 6]. The diagram in Figure 9.2

shows the control flow inside UDB and how its generators are related to each other. The evaluator

generator provides the ability to suspend its main monitoring loop without losing its state. Then

control is transferred into its caller, which is another generator called the session generator. The

session generator is where the state of the debugging session is saved and later resumed when the user

resumes the execution of the buggy program after some investigation in the console interface. This

session generator provides implicit ability to maintain the debugging session and the state of the

evaluator generator before handing control to the console. This mechanism provides the capacity to

Table 9.1. UDB's Default Monitor Events

Event Code Description

1 E_Exit Reports when the target program terminates normally

2 E_Error Reports when the target program terminates abnormally

3 E_Signal Reports when the target program receives an unhandled signal

4 E_MXevent Reports when a GUI event is handled properly in any of the GUI

loaded based external agents

104

continue debugging by resuming the generator of the debugging session, which continues from its

previous state and resumes the evaluator at the point that was suspended.

Those generators allow a clean design that includes two nested loops. First loop is the main

console based interface. This loop interprets commands from the user and passes them to the

debugging Session. Second loop is the main debugging session loop that iterates until the buggy

program is terminated. The implementation of these generators has little impact on UDB’s overall

performance. They are only resumed after a command line used by the user and they are suspended

based on some debugging context that has to be presented to the end user. So, the time complexity of

these generators is not noticeable by the end user.

For example, if the received event represents a runtime error E_Error, then the generator of the

debugging evaluator terminates, returning control to the debugging session. The debugging session

saves its state and transfers control back to the console, where the user can investigate. However, if

the received event represents any other action such as a breakpoint or a watchpoint, or a bug has been

detected, then the generator of the debugging evaluator suspends, thereby saving its state, and

transfers control to the debugging session. The debugging session transfers control back to the

console with the right message based on the current debugging context and the debugging state. In the

console, the user may choose to investigate or resume execution, at which point the generators of the

session and the evaluator are resumed.

9.3.6. Main Debugging Loop

The code in Figure 9.4 starts with the while loop. In each iteration, EvGet() activates the buggy

program looking for an event. Events received by the debugger are further filtered, and additional

state inspection performed, as part of the execution monitor’s analysis. The main debugging action is

maintained in both the State and the RunCode attributes of the DebugState class. At the end of the

loop and before reactivating the buggy program for a new event, the debugging State is checked to

decide if the loop has to be suspended, or returned, or just has to look for another event.

9.4. Implementation

UDB implements its classical debugging techniques as well as its advanced agents by

monitoring the buggy program for runtime execution events. This section provides implementation

details about UDB’s various debugging techniques.

105

while EvGet(DState.eventMask, DState.valueMask) do {

 case &eventcode of{

 E_Line:{

 if *DState.breakMask > 0 then Break.checkBreakpoint()

 if DState.RunCode = NEXT then{ Step.checkNext() }

 if DState.RunCode = STEP then{ Step.checkStep() }

 }

 E_Assign | E_Value :{

 if *DState.watchChangeMask > 0 then Watch.checkWatchChange()

 }

 E_Deref:{

 if *DState.watchReadMask > 0 then Watch.checkWatchRead()

 }

 E_Spos | E_Snew:{

 if *DState.watchChangeMask > 0 then Watch.checkWatchScan()

 }

 E_Exit:{

 DState.State := END

 }

 E_Error:{

 DState.State := PAUSE

 DState.RunCode := ERROR

 handleRunError()

 }

 E_Signal:{

 DState.State := PAUSE

 DState.RunCode := SIGNAL

 }

 } # end of case ecode

 if *DState.traceMask > 0 & member(DState.traceMask, &eventcode) then

 Trace.TraceBehavior()

 if Internal.enabled > 0 & member(Internal.eventMask, &eventcode) then

 Internal.forward()

 if External.enabled > 0 & member(External.eventMask, &eventcode) then

 External.forward()

 if Dstate.State = PAUSE then suspend

 if Dstate.State = END then return

 }# end of while

Figure 9.4. UDB’s Main Debugging Loop

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

106

9.4.1. Loading a Buggy Program

UDB dynamically loads the program’s binary executable, see Chapter 5. At load time, UDB

analyzes the code in order to obtain a complete list of source file names in use; including library files.

When a program is loaded, UDB builds its related symbol table with fields including: all global

variables, procedures, built-in functions, records, classes and their methods, and all packages and

their global variables, classes, and procedures.

 9.4.2. Breakpoints

UDB’s breakpoints are implemented by monitoring the line number event E_Line only when

there is at least one breakpoint in the debugging session. Furthermore, UDB processes a line number

event only when that line number has a predefined breakpoint on it. Utilizing the value mask of the

AlamoDE framework approximates this implementation. This value mask provides an extra

condition, applied on the event value. It limits the line number event code E_Line to those values

provided by the value mask, see Figure 9.5.

method checkBreakpoint()

 local cur_file, cur_line, L, x, id

 cur_file := keyword("file", Monitored)

 if L := member(breakPoints, cur_file) then{

 cur_line := &eventvalue

 every x := !L do{

 if cur_line = x.line & x.state = ENABLED &

 id := isBreakExist(cur_file,cur_line) then{

 DState.State := PAUSE

 # Temporarily remove the breakMask set from the valueMask table

 # until the “continue” command is applied. This allows the "next" and "step"

 # commands to operate

 delete(DState.valueMask,E_Line)

 msg :="\n Breakpoint # "||id||" at : "|| cur_file||":"||cur_line||"."

 DState.Write(msg)

 return

 }

 }

end

Figure 9.5. UDB’s Implementation for Breakpoints

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

107

In this implementation, there is only a context switch if the line number event and its value are

satisfied. For example, when the user applies a breakpoint command, UDB checks its location within

the program’s source code, to ensure the line number is within the file and it has an executable

statement. It inserts the E_Line event code to the set of monitored events; the event mask. At the

same time, it associates this event mask with the line number of this breakpoint. So, the internal

instrumentation will only report the E_Line event for those lines that match one of the lines found in

the value mask. For the sake of better monitoring consistency, a breakpoint on a procedure or method

is converted internally into a breakpoint on a line number, which is the line number of the procedure’s

header. Figure 9.5 shows the checkBreakpoint() method, which is called by UDB’s evaluator when

the E_Line event is reported. In line 4 of the figure, UDB inquires the current executable file name,

using the built-in function keyword("file", Monitored), to ensure the reported line number event is

from the right file name. Alamo’s E_Line filtering mechanism of event mask and value mask does

not check for the program source file. This induces a false positive report of the E_Line event when

its value is satisfied regardless of the source file.

9.4.3. Watchpoints

UDB’s watchpoints are implemented by monitoring the assignment event E_Assign only for

those variables that have predefined watchpoints on them. Utilizing the value mask over the

E_Assign event approximates this implementation in a technique similar to the one discussed in

Section 9.4.2. This implementation takes advantage of the dynamic event masking and value masking

provided by AlamoDE. For example, when the user applies a watchpoint command, UDB resolves its

scope and inserts the E_Assign event code to the set of monitored events; the event mask. At the

same time, it associates this event mask with the name of this watched variable. So, the internal

instrumentation will only report the E_Assign event for those assignments that are related to that

exact variable.

After the watchpoint command is applied, UDB starts monitoring this E_Assign event. The

method checkWatchChange() provided in Figure 9.6 shows UDB’s implementation for typical

watchpoints that check whenever a variable is assigned. The event value of the E_Assign event is the

name of the variable to be assigned. The event is reported right before the assignment is

accomplished. In order to obtain the new value to be assigned, AlamoDE provides the E_Value

event. This event is always associated with the E_Assign event and reports the assigned value. For

performance reasons, UDB’s evaluator monitors the minimum number of events based on the current

debugging context. After UDB validates that the reported E_Assign has a currently enabled

108

watchpoint on it, it obtains this variable value by updating the event mask with a new event code

E_Value before re-activating the target program, see line 12 of Figure 9.6. This allows the target

program interpreter to report the value of the assigned variable as soon as that variable is assigned.

After the watchpoint is reached, this event code E_Value is removed from the set of monitored

events, see line 21 of Figure 9.6.

method checkWatchChange()

 static var, viv, hit := 0, evalue := 0

 if &eventcode == E_Assign &

 member(DState.watchChangeMask,&eventvalue) &

 (viv := varInfo[&eventvalue]) & viv.state = ENABLED then{

 var := &eventvalue

 if /viv.hitMax | viv.hitMax < 0 | (viv.hitCount < abs(viv.hitMax)) then{

 hit := 1

 if not member(DState.eventMask, E_Value) then{

 evalue := 1

 DState.eventMask ++:= cset(E_Value) # adds E_Value to the value mask

 }

 return

 }

 }

 else if &eventcode == E_Value & hit=1 then{

 hit := 0

 if evalue = 1 then{

 evalue := 0

 DState.eventMask --:= cset(E_Value) # removes E_Value to the value mask

 }

 viv.oldValue := viv.curValue

 viv.curValue := &eventvalue

 if \viv.catchValue then

 checkCatchValue(var)

 else

 printWatchedVarInfo(var)

 return

 }

end

Figure 9.6. UDB’s Implementation for Watchpoints Check

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

109

9.4.3.1. Advanced Watchpoints

Besides typical watchpoints that observe variables being assigned, UDB supports special

watchpoints that deal with advanced language features such as string scanning environments and

implicit type changing. UDB’s watchpoints are capable of observing expressions such as:

1. Variable assignment. See awatch command in Appendix A.8.

2. Variable read (dereferenced). See rwatch command in Appendix A.8.

3. Variable assigned a value different from the previous value. See vwatch command in

Appendix A.8.

4. Variable assigned and the new type is different from the previous type. See twatch command

in Appendix A.8.

5. A keyword explicitly assigned by the program’s code, and

6. An implicit string scanning environment is changed by the string scanning primitives; mainly

the &subject and &pos keywords. See swatch command in Appendix A.8.

For example, the command swatch observes every operation on a string scanning environment

and shows a window of the scanned string along with other information such as the old position, the

new position, and the delta between them.

UDB’s watchpoints may cause the program to stop, or they may work silently collecting

information about specific evaluation(s). Silent watchpoints collect location and value about specific

evaluations without pausing the program’s execution. The user may review collected information at

any point during or after the execution. Regardless of whether the watchpoint is silent or not, the user

is able to set a watchpoint for a limited number of satisfied incidents. See Appendix A.8.

9.4.3.2. Watched Variables

When reported in an Alamo event value, variable names are mangled with scope code characters

that identify the scope of the reported variable. The characters ―–‖, ―^‖, and ―:‖ are appended along

with the procedure name to distinguish normal local, parameter, and static variables respectively.

Global variables are distinguished using the ―+‖ character attached to the end of the variable name

[108]. The potential value mask associated with the E_Assign event is a set consisting of the

watched (monitored) variables. This value mask eliminates the E_Assign event from being reported

for similar variable names found in other procedures.

110

UDB uses these scope codes while watching variables. When the buggy program is loaded but

not running yet, the user can set watchpoints on valid keywords, global variables, and local variables

that are provided by the command as mangled variables (i.e. watch a-main). When the program is

stopped for a breakpoint, the user can set watchpoints on valid keywords, locals that are mangled with

their scope name, locals that are not mangled but live in the currently selected stack frame, and of

course global variables.

Locals that are mangled and their procedures are currently active on the call stack are verified

based on dynamic information from the current execution state. Otherwise, UDB uses the static

information collected from the buggy program at load time to ensure that those variables are valid. If

the variable is not mangled, UDB automatically resolves the scope based on the currently selected

stack frame and the current execution state. By default, when a plain variable is specified by the

watchpoint command, UDB checks whether it is a keyword. If it is not a keyword, then UDB looks it

up in the currently selected stack frame. If this variable name is neither a keyword nor a local

variable, then UDB looks it up in the global variables. Otherwise, UDB complains with an error

message.

9.4.4. Tracepoints

UDB’s tracepoints are another extension that goes beyond the capabilities of breakpoints and

watchpoints found in conventional debuggers. Using execution behavior tracing, a user is able to stop

the execution based on potential behaviors such as the type of the returned value from a user-defined

procedure, built-in function, and language operator. For example, often programmers write their

functions and procedures to return a specific value as an error code, which may describe an

unfinished or failed job. UDB’s tracepoints allow a user to place a tracepoint on a specific procedure

returned value. The command ―trace bar return <= 1‖ sets a tracepoint on procedure bar whenever

it returns a value <= 1.

This type of tracing provides additional flexibility in order to simplify and speed up the process

of discovering bug locations. The user can check the traced info from any point during or after the

execution. Traced execution behaviors are divided into two categories: 1) general behaviors, which

are described by the words start and end, and 2) detailed behaviors, which are used to describe more

details about the start and end. The start behavior can be broken down into call and resume,

whereas the end behavior is broken down into return, suspend, fail, and remove. For example, the

command ―trace 10 bar resume‖ sets a tracepoint on procedure bar for the first 10 times it

111

resumes, see Appendix 1.9. Behaviors are associated with the semantics of the Unicon/Icon language,

see Table 9.2.

9.4.5. Stepping and Continuing

UDB implements the step and next commands using the line number event E_Line. However,

the implementation of the next command ensures that the event from the line number change E_Line

is never preceded by any procedure call event E_Pcall. If a procedure call event occurs, UDB ignores

line number changes until the program returns from all of the procedures that were called on that line

where the next command was applied. On the other hand, the continue command resumes the buggy

program at its full speed. Its implementation is accomplished by removing the line number event

E_Line and the procedure call event E_Pcall from the monitoring event mask unless they are needed

by another currently enabled debugging feature.

Figure 9.7 and 9.8 show the implementation of the two methods responsible for the next

command in UDB. First, the implementation of the next command is provided by the

cmdNext(cmd) method in Figure 9.7. It receives a command from the user and updates the

debugging state with the NEXT flag. It checks and saves the current stack level using

keyword("&level", Monitored) function. This level is used by the second method named

Table 9.2. UDB's Tracepoints

Behavior Description

start Represents the general call or resume of a procedure, built-in function, or operator

end Represents the general return, fail, suspend, and remove of a procedure, built-in

function, or operator

call represents normal procedure, built-in function, or operator call

resume Represents the resumption of a suspended procedure, built-in function, and

operator

return Represents exiting a procedure with the language keyword return. For built-in

functions and operators represents the behavior of finishing a successful call

fail Represents exiting a procedure with the language keyword fail or reaching the end

of the procedure. For built-in functions and operators represents the behavior of

failing to accomplish the intended job

suspend Represents suspending with the language keyword suspend

remove Represents removing a suspended procedure, built-in function, or operator as a

result of exiting a parent procedure, built-in function, or operator

112

checkNext() provided in Figure 9.8. This method is called at every line number change E_Line

event after the next command is applied. It checks for the appropriate line where to stop after the next

command. It also inquires the keyword &level of the buggy program and compares its value against

the level obtained when the command was applied.

checks for the appropriate line where to stop after the next command.

method checkNext()

 local level

 level := keyword("level", Monitored)

 if level > nex_level then

 nextCount +:=1

 if level = nex_level then{

 if nextCount > 1 then { nextCount -:= 1 }

 else if next_count = 1 then{

 nextCount := 0

 stepCount := 1

 DState.State := PAUSE

 DState.RunCode := STEP

 }

 }

end

Figure 9.8. Implementing Next within the Evaluator

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

starts the next command

method cmdNext(cmd)

 local count

 if DState.State = PAUSE & DState.RunCode ~= ERROR then {

 if count := integer(cmd[2]) then nextCount := count

 else nextCount := 1

 nex_level := keyword("level", Monitored)

 DState.Update(NEXT)

 DState.Write(" Nexting.")

 }

 else {

 DState.State := ERROR

 msg := "\n The program is not being run._

 \n Try \"run\", or Type \"help\" for assistance"

 DState.Write(msg)

 }

end

checks for the appropriate line where to stop after the next command.

method checkNext()

 local level

 level := keyword("level", Monitored)

 if level > nex_level then

 nextCount +:=1

 if level = nex_level then{

 if nextCount > 1 then{

 nextCount -:= 1

 }

 else if next_count = 1 then{

 nextCount := 0

 stepCount := 1

 DState.State := PAUSE

 DState.RunCode := STEP

 }

 }

end

Figure 9.7. Initiating a Next Command

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

113

9.4.6. Stack Navigation

When a program performs a procedure call, information about the call is generated and saved in

the execution stack in blocks called procedure frames, which are distinguished by their level. Each

frame includes arguments and local variables of the called procedure. The procedure frame is saved

on the stack until the procedure is returned. However, when the program is stopped, UDB provides

the ability to investigate where and/or how the program’s execution got to this point. By default,

when the buggy program stops, UDB points implicitly to the current procedure frame, which is the

last frame on the execution stack. When the program is stopped, the current frame is frame number 0.

In contrast, the oldest frame on the stack has the biggest frame number, which is the frame for

procedure main(). UDB allows a user to explicitly jump to any other frame. UDB associates

procedure frames with the exact statements in the source code that instantiated them by utilizing the

AlamoDE keyword() primitive to find relevant keyword values such as &file, &line, and &level.

9.4.7. Data Navigation/Modification

UDB provides the ability to examine and change data during the execution. Specific variables,

keywords, and data structures can be looked up and modified during the debugging process using the

variable() primitive. When a variable is looked up, its type is checked implicitly to assist the user

better. If the target variable has an Atomic Type such as null, integer, real, cset, or string, then the

presented value is the variables current value. Otherwise, if the target variable has a Structured Type

such as list, table, record, set, procedure, or window, then UDB provides the user with a string

representation of the referenced structure. An image of a structure is the internal name of that

structure associated with its serial number and the number of elements or fields inside. In contrast, the

ximage of a structure is a string containing the elements of that structure and its substructures.

114

Part IV

Extension Agents

115

Chapter 10

UDB’s Advanced Debugging Agents

Bugs vary in their root causes and their revealed behaviors; some may cause a crash or a core

dump, while others may cause an incorrect or missing output or an unexpected behavior. Moreover,

most bugs are revealed long after their actual cause. A variable might be assigned early in the

execution, and that value may cause a bug far from that last assigned place. This often requires users

to manually track heuristic information over different execution states. This information may include

a trace of specific variables’ values and their assigned locations, procedures and their returned values,

and detailed execution paths.

10.1. UDB’s Extensibility

UDB’s breakpoint based debugging provides the ability to control the execution of the buggy

program by stepping and continuing, and the ability to investigate the current execution state. This

style of debugging is not always good enough. Augmenting UDB with various agents is one way to

improve its standard debugging process. For UDB, agents may retain information beyond the current

state of execution and perform automatic and dynamic analysis techniques. In some cases the agent is

confident that it has found a bug and in others it issues an appropriate warning. Either way, the

combination of valgrind-style [18] dynamic analysis within an interactive debugger makes both

methods more effective.

Taking advantage of the IDEA architecture presented in Chapter 8, UDB allows various agents-

based tools and techniques to be used during a debugging session. Any event-driven AlamoDE-based

standalone program can be loaded and used on the fly during a debugging session. External agents are

enabled at load time but may be explicitly disabled and re-enabled by the user at will. Originally,

some of UDB’s agents were written and tested as standalone programs, used as external debugging

agents under UDB, then migrated to internals for reasons that include:

1. Better performance. External agents are used through context switches whereas internal agents

are used through a relatively faster procedure call mechanism

2. Better availability. Unlike external agents that must be located and loaded for every

debugging session, internals are always available and the user has only to enable them when

they are needed. Internal agents are distributed with the source code of UDB

116

3. Agent collaboration. Some internal agents can be used from within the temporal logic

operators, which are another set of internal agents. So, dynamic temporal assertions allow

some agents to implicitly use other agents, see Chapter 11 for more information.

Currently, UDB has a library of different internal agents, which monitor different behaviors such

as memory allocations, garbage collections, loop iterations, loop times, and procedure times. Internal

agents are disabled by default; the user has to enable them explicitly during the debugging session.

This chapter presents three kinds of UDB’s potential extension agents.

10.2. Visualization Agent

Visualization tools are standalone graphical tools used to summarize and depict execution

properties and present their analyzed data by visual means. Figure 10.1 shows an example of two

visualization tools loaded on the fly at the beginning of a UDB debugging session. These tools are not

interactive; they work simultaneously in the background of the debugging session.

The debugging session in Figure 10.1 shows a moment during an execution of the Unicon

translator under UDB (a preprocessor that translates Unicon down to Icon). During this debugging

session, the translator was given a relatively large Unicon module (idol.icn, 1235 lines) as input. The

upper tool shows an incremental view of the total memory allocations in both of the string and block

regions. The lower tool presents the allocation and usage of various data types. Each allocation type is

coded in a different color. The upper row of pie charts shows the percentage of total allocations,

number of allocations, string allocations, block allocations, and number of created structures

respectively. The second row shows the usage of each one of those data structures starting with list,

tables, sets, records, and the usage percentage of all data structures in use.

These visualization tools are used as external agents and have not been migrated to internals.

However, these tools being loaded and used within a typical interactive session, the user is able to

manipulate the target’s program control and data flow through means of breakpoints and watchpoints.

For example, the user can place a breakpoint on some line number and stop the program. This allows

the user to check the tools’ results up until that point. It is also possible to single step the execution

and simultaneously check the incremental progress in the visualization process. Moreover, if any of

these tools are used in a standalone mode, the user will have no control over the execution of the

monitored program unless it is already supported by the tool’s user interface.

117

10.3. Language-Specific Agents

UDB employs a set of internal agents to locate numerous potential bugs associated with the

semantics of the Icon and Unicon languages. UDB’s IDEA support provides commands to enable and

disable such agents, see Appendix A.16. Those agents monitor execution behaviors looking for

specific symptoms such as:

1. Variables that may change their type during the course of execution

2. Expressions that may fail silently in contexts where failure is not being checked, and

3. Redundant implicit type conversion which may hurt the execution performance.

The following subsections provide a discussion for each one of these agents.

Figure 10.1. UDB's on-the-fly Visual Extensibility

118

10.3.1. Variable Changing Type (or Domain)

Unicon is a dynamically typed language; no variable declaration is needed and a variable can be

assigned values of different types. Such type changes are not a good programming practice; they

usually indicate a logical error and/or complicate any reading of the source code. This agent catches

such dynamically typed variables by monitoring every assignment and checking whether it produces

any type change on the assigned variable. This detection is based on two consecutive events:

E_Assign and E_Value which are the event code of the assignment and assigned value respectively.

This agent’s implementation is very expensive. It can be enhanced with information from the

static type inference used originally by the Icon’s compiler named iconc [128] used in Unicon when

the -C option is used on the command line [129, 130]. This type inference output may limit the

detection process to a much smaller subset of suspicious variables.

10.3.2. Failed Expressions

Unicon’s logic programming flavor of failure and success has its advantages. But, if it is not

used properly, it will induce side effects into the execution of the program. In practice, not all failures

are intentional. Sometimes, a failure can point at a potential cause of a bug. For example, Unicon’s

lists are dynamic in size. If the program tries to access an element beyond the list’s actual number of

elements, the operation fails silently. This semantic is useful in conditional expressions, but in

ordinary code it usually indicates a bug.

In UDB, users can request notification about unchecked failed expressions, and they can decide

for themselves whether it is a bug or not. This agent performs the suspicious failure check by

monitoring failures in various expressions and built-in operators and reports where and when that

failure was happened. An example, of the monitored events is E_Efail, E_Ofail, and E_Ffail which

they report after expression failures, operator failures, and built-in function call failures respectively.

10.3.3. Redundant Conversion

A program’s poor performance might be unexplainable, especially if the complexities of the

algorithms do not indicate that performance should be slow. This slow down might be caused by any

number of bad programming practices. In Unicon, one common performance bug results from

frequent redundant type conversions.

119

This agent automatically detects such potential performance bugs. It starts by tracking implicit

type conversions at every location and analyzes the frequent conversions and their locations. This

detection is based on two events: E_Sconv and E_Tconv, which report the successful conversion

and the result type of the conversion respectively.

10.4. Language-Independent Agents

Finally, UDB is extended with two sets of general agents: data and behavior related agents. This

set of agents is called Atomic for their tiny sizes and outcome results that produce a value, which may

be boolean, numeric, string, or even a structure. They facilitate simple but common operations during

the debugging process and provide extra heuristic information with easy processing. These two sets of

agents can be used as standalone internal agents or as atomic operations applied by UDB’s dynamic

temporal assertions presented in Chapter 11. These extension agents expand the usability of UDB’s

built-in features with the ability to validate more specific data and behavioral aspects of the execution

properties.

10.4.1. Data Related Agents

This category of extension agents is used to retain and process data in relevance to the execution

state. Data agents are used to utilize advanced on demand specific data tracing techniques. The user

can enable and disable those agents to work on different variables; each agent can be enabled several

times, each on a different variable provided by the user at enabling time. See Table 10.1 for a list of

all UDB’s atomic data extension agents.

 For example, depicting a variable’s initial, previous, current, or next value can be critical in

understanding the evaluation of an expression and the execution of the program. Normally a user can

place a watchpoint on specific variable to inspect its value during the execution. This watchpoint

notifies the user whenever the target variable is changed or even read. Then the user has to write

down or memorize these values trying to understand how the evaluation develops during the

execution. Sometimes, the user may end up doing some calculations on those written down data such

as finding the minimum, maximum, sum, and average. Or even carefully watch those values to find

when a new maximum or new minimum is reached. UDB provides various agents that can be

employed to semi-automate such a process and save the user’s time and effort. These data related

agents can allow the user to automatically collect various properties about specific variables and

retain them whenever it is needed.

120

10.4.2. Behavior Related Agents

During a debugging process, a user may try to understand the behavior of the execution by

watching specific runtime properties such as the number of times a loop has been iterated or the

number of times a procedure has been called, a variable being assigned, read, referenced, or even

initialized, and how many aliases a data structure has and what they are. UDB employs behavior

related agents that will reduce the manual inspection that could be done using traditional breakpoints

and watchpoints. See Table 10.2 for a list of UDB’s atomic behavior related agents.

 This set of extension agents is intended to facilitate users’ ability to validate and check specific

execution behaviors. They provide advanced on demand specific behavior tracing techniques. Some

of those agents are focused on the call/return behavior of procedures; which either counts the number

of times a procedure has been called or what value is returned. Other agents are focused on the

read/write and aliasing of variable behaviors.

For example, code in the program must be executed under some circumstances; otherwise it is

dead code. However, sometimes a loop may execute zero times because the loop condition is not

valid. If such a loop fails constantly, it may indicate a bug. Unfortunately, using classical debugging

techniques, it is difficult to observe loops that exhibit this suspicious behavior. The agent

Table 10.1. Atomic Data Related Agents

Agent Name Return Type Description

initial(x) Any The initial value of x

final(x) Any The final value of x

old(x) Any The previous value of x

current(x) Any The current value of x

new(x) Any The next value of x

max(x) Numeric / String The maximum of all x values

min(x) Numeric / String The minimum of all x values

newmax(x) True/False Evaluate True if x has new max, False otherwise

newmin(x) True/False Evaluate True if x has new min, False otherwise

sum(x) Numeric The sum of all x values

avg(x) Numeric The average of all x values

121

iteration(while) finds the actual number of iterations for the last while loop. This agent checks loops

iteration by monitoring both the E_Syntax and E_Efail event codes, which report the current syntax

and failed expression respectively.

Another example targets uninitialized and dead variables, which are variables read and never

assigned or assigned and never read during a particular execution. In mainstream languages, detecting

uninitialized and dead variables can be achieved using static analysis techniques. However, the

dead(x) agent detects variables that are theoretically live according to static analysis and the user’s

expectations, but observed to be dead in a particular program run. Even if such variables do not

introduce a bug, they are still a bad programming practice; it helps to warn the user about them. This

agent tracks referenced variables based on their scope. For example, local variables are monitored

over different calls before they can be considered frequently uninitialized or dead. The primary

monitored event code is E_Deref, which is reported when a variable is read.

Table 10.2. Execution Behavior Related Agents

Agent Name Returns Description

call(proc) Integer The number of times proc is been called

return(proc) Variable The current value returned by proc

initialized(x) True/False True if x was assigned at first reference, False otherwise

dead(x) True/False True if x is never referenced at least once, False otherwise

reference(x) Integer The number of times x is been read + written

assign(x) Integer The number of times x is been assigned

read(x) Integer The number of times x is been read only

alias(x) List All current x aliases

iterations(loop) Integer The number of actual iterations of loop

122

Chapter 11

DTA: Dynamic Temporal Assertions

This chapter introduces the idea of Dynamic Temporal (DT) assertions into the conventional

source-level debugging session. It extends UDB with on the fly DT assertions that are separate from

the program source code. Each assertion is capable of:

1. Validating a sequence of execution states, named temporal interval

2. Referencing out-of-scope variables, which may not be live in the execution state at evaluation

time

3. Employing a growing set of user defined atomic agents (internal extension agents).

These new assertions are not bounded by the limitations of ordinary in-code assertions such as

locality, temporality, and static hardwiring into the source code. Furthermore, they advance typical

interactive debugging sessions and their conditional breakpoints and watchpoints. UDB’s DT

assertions serve three purposes:

1. Extend the usability of conventional source-level debuggers’ conditional breakpoints and

watchpoints. This simplifies the ability to validate relationships that may extend over the

entire execution and check information beyond the state of evaluation

2. Reduce the number of times a user has to stop and single step the execution for state-based

investigation

3. Augment a traditional breakpoint-based debugging session with testing and verification

capabilities. It introduces testing and verification features into traditional source-level

debugging sessions [125]. For example, it allows users to verify loop invariants.

11.1. Temporal Assertions

Assertions are logical expressions that are inserted into the source code of a program. When

execution reaches the asserted statement, it asserts that some property holds in the program’s current

state. If the asserted expression does not hold, the assertion will abort and terminate the program’s

execution. In contrast, Temporal Assertions are logical expressions that use Temporal Logic (TL) in

order to validate, not one state, but a sequence of execution states, such as a sequence of variable

values changed within a block of code [126].

123

11.1.1. Temporal Logic

Temporal logic is a special branch of modal logic. It emphasizes the notion of time and order

[123, 124]. Linear-time Temporal Logic (LTL) is a special branch of temporal logic that extends

propositional logic with a new set of operators such as:

1. Next: the property must hold in the next step

2. Previous: the property must hold in the previous step

3. Finally, Eventually, Sometime: the property will hold at some state in the future

4. Globally, Always: the property must hold at every state on the execution path

5. Until: the property has to hold until some other property holds

6. Since: the property should hold since another property was held

LTL is mostly used to measure program correctness. Metric Temporal Logic (MTL) extends

LTL to support real-time and relative-time constraints [123, 124]. MTL has two models 1) a point-

based model that observes the target program at every instant in time, and 2) an interval-based model,

that observes the target program over an interval of time. This chapter utilizes a combination of these

two models within an interactive debugging session. The extended debugger provides Temporal

Assertions that allow programmers to check real time execution properties over both temporal-state

and temporal-interval and during interactive debugging sessions.

11.1.2. Temporal Assertions vs. Ordinary Assertions

Standard in-code assertions are inserted into the source code to validate pre- and post-conditions

or to check the value of some variables and expressions. In general, typical assertions suffer from

three limitations: locality, temporality, and lack of dynamicity within the source code of the buggy

program. The following three sub-sections discuss these limitations in detail.

11.1.2.1. Locality

An ordinary assertion is bounded by its location (scope); it cannot reference a variable from

another scope even if it is live based on the current execution state. Assertions live in one of the

functions; each can reference local and global variables. If the scope is a method, it can reference any

of the class variables. In fact, typical assertions cannot check or validate local variables in other

functions or methods, even if that foreign local is static or still live somewhere on the stack of the

current program’s execution state.

124

For the sake of simplicity, suppose that a variable in the calling function must be checked against

another variable in the callee. A typical assertion cannot reference both of them at once. DT

assertions provide a simple solution for such situations. See Figure 11.1 where a DT assertion can be

virtually inserted into line 27. The assertion would refer to the local variable y in function bar() and

compares its value against the variable x from function foo(). Furthermore, even though this assertion

is inserted at line 27, it will evaluate the asserted expression (y >= foo:x) whenever the value of y is

changed within bar(). That is because it is a Temporal Assertion, not a typical assertion, and its scope

is procedure bar(). This particular assertion asserts that always the value of this expression (y >=

foo:x) must hold (evaluate to true) for every evaluation, whether it is on the temporal-state or

temporal-interval level. When this assertion is triggered for evaluation, by entering procedure bar(),

the assertion agent has already obtained the last value of variables x of procedure foo(). Variable y is

local to where the assertion is virtually located, so the assertion agent will inquire this value at

evaluation time. Of course, this particular example can become more interesting than its current

version when foo() is a recursive function and x is a parameter to bar().

11.1.2.2. Temporality

An ordinary assertion is bounded by the current state of execution. It can check only the current

value of the referenced variables. In Figure 11.2, line 75 of procedure baz(), both foo() and bar() are

not on the stack any more. What if a user needs to check the value of variable x from procedure foo()

against variable y from function bar()? Ordinary assertions are found to be useless once more.

procedure foo()

 local a, b, c

 x := 10

 …………..

 bar()

 …………..

end

procedure bar()

 local a, b, c

 y := 20

 …………...

 y := (y * a) / b – c

 // virtually assert always() { y >= foo:x }

 ……………

end

Figure 11.1. A DT Assertion over Two Live Procedures

10

11

12
….

16
….

19

20

21

22
….

26

27
….

30

125

11.1.2.3. Source Code Location

An ordinary assertion is bound to the source code, where it is written and compiled in the

executable; any change or modification requires the ability to recompile and rebuild the executable. If

the ordinary assertion evaluates to false, it may provide a warning statement or terminate the

execution. If the user wants to investigate, he/she may modify the assertion by tightening or loosening

the condition, or adding nearby assertions. In addition, the user may consider loading the buggy

program under a source-level debugger, which allows single stepping and provides the ability to

investigate the execution state. Thus, DT assertions work with the source-level debugger, where the

user is interactive with the execution and able to insert, delete, and modify DT assertions on the fly

without source or object code modification.

11.1.3. Temporal Assertions vs. Conditional Breakpoints

Conditional breakpoints and watchpoints are dynamically inserted during the debugging session.

They can check execution properties and stop the execution whenever a condition is satisfied. Even

though such breakpoints may have the advantage of being conditional and dynamic with on the fly

insertion, deletion, and modification, they are still bounded to their locations; the exact line number in

the source code of the target program and the state of the referenced variables and objects in that

location.

procedure foo()

 static x := 0

 x +:= 1

 …………..

end

procedure bar()

 static y := 0

 y +:= 1

 …………...

end

procedure baz()

 foo()

 …………...

 bar()

 // virtually assert always() { bar:y >= foo:x }

 …………...

end

 Figure 11.2. A DT Assertion over Two Sibling Functions

10

11

12
….

30

31

32

33
….

60

61

62
….

74

75
….

90

126

In general, most source-level debugging techniques rely heavily on the user’s ability to

investigate when the program is stopped. For example, in reference to the instance provided in Figure

11.1 of Section 11.1.2.1, tackling similar problems from inside a conventional source-level debugger

will take one of two approaches. The first approach is to insert two different breakpoints, where the

user has to investigate at each stop and memorize or write down the value of variable x from the first

breakpoint in order to compare it against the value of y at the second breakpoint. The second

approach takes advantage of function foo() being on the stack. The user may insert one breakpoint in

function bar(), find the value of y, navigate the stack to find the value of x, and compare them. In

contrast, a DT assertion is able to reference the out-of-scope variable x and compare it directly against

the in-scope variable y and notify the user only when the assertion evaluates to false.

Unlike breakpoints that stop the execution only when the condition evaluates to true, this DT

assertion default action is to stop the execution when the condition is violated. The evaluation action

hide is the default action for any temporal assertion that evaluates to true. However, the user can

change this default action to pause, show, or stop, see Section 11.4.5. Furthermore, DT assertions

are able to reference variables that are not accessible (not active in the current execution state) at

evaluation time. This feature solves the problem provided in Figure 11.2 of Section 11.1.2.2, which

shows that procedure foo() and bar() are siblings in baz().

11.2. UDB’s DT Assertions

Figure 11.4 provides a simple UDB debugging session with an example of a DT assertion used

to validate that a recursive function is going in the right direction. The debugged program is shown in

Figure 11.3. The debugging session example shows a recursive implementation of the factorial

calculation and illustrates how a DT assertion is used from within UDB’s console-based interface.

The assertion is inserted using the assert command, which dynamically anchors the body of the

assertion in the executable of the buggy program, at line 3 of Figure 11.3, with no executable or

source code modification; more details about the notation are discussed in Section 11.7.

During a debugging session, a user is always able to adjust and move assertions manually.

However, if for any reason, the target program source code has to be changed and reloaded under the

debugger, currently, the debugger has no means to maintain those ad-hoc assertions within their

virtual source code related location. A future work is planned to maintain these assertions in a

debugging session configuration file that will allow the user to reload the session. When the assertion

is found to be misplaced, if the debugger failed to automatically adjust any of the affected assertions,

the debugger may ask the user to manually relocate it.

127

$ udb factorial

 UDB Version 2.0, December 1, 2009.

 factorial: loaded 2.5K bytes of 32-bit uncompressed icode

 1 Source file(s) found

 Type "help" for assistance

(udb) assert factorial.icn:3 alwaysp() { old(n) > current(n) }

 Assertion 1#: assert factorial:3 alwaysp() { old(n) > current(n) }

 is set successfully.

(udb) run 5

 running factorial …

The factorial of 5 is 120

 The factorial program exited normally.

(udb) quit

 Thank you for using UDB, Goodbye !

$

Figure 11.4. Sample UDB Session that Uses DT Assertions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The factorial sample test program

procedure fact(n)

 if n <= 1 then

 return 1

 else

 return n * fact(n-1)

end

procedure main(arg)

 write(“The factorial of ”, &progname,“ is ”,fact(arg[1]))

end

$ udb factorial

 UDB Version 1.5, January 2009.

 factorial: loaded 2.5K bytes of 32-bit uncompressed icode

 1 Source file(s) found

 Type "help" for assistance

(udb) assert factorial.icn:3 alwaysp(){ old(n) > current(n) }

(udb) run 5

 running factorial …

The factorial of 5 is 120

 The factorial program exited normally.

(udb) quit

 Thank you for using UDB, Goodbye !

$

Figure 11.3. Sample Factorial Program Written in Unicon

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

128

11.3. Debugging with DT Assertions

DT assertions, within a typical source level debugger, provide an extension of conditional

breakpoints and watchpoints. They employ agents that implement temporal logic operators, each with

an automatic tracing mechanism. Traced data are assertion-driven; relevant information is gathered

and analyzed in real time. Different DT assertions can be applied on different execution properties

with dynamicity and flexibility. Each assertion is capable of validating program properties that may

extend over a sequence of execution states. UDB’s DT assertions have the following features:

1. Dynamic insertion, deletion, enabling, disabling, and modification. Assertions are managed on

the fly during the debugging session without source or executable code alteration

2. A non destructive way of programming supported by an assertion free source code. In

general, debugging information is needed only during program development, testing,

verification, validation, and debugging

3. Assertions are virtually inserted and evaluated as part of the buggy program source code. All

assertions live in the debugging session configuration; each is evaluated by the debugger in

the debugger execution space. The debugger automatically maintains state-based techniques

to determine what information is needed to evaluate each assertion, and it uses event-based

techniques to determine when and where to trigger each assertion evaluation process. Some

program state-based information is collected before assertion evaluation, while other

information is obtained during the evaluation process; see Section 11.6.1 and 11.6.2. All DT

assertions are evaluated as if they were part of the target program space

4. Optional evaluation suite, where a user can specify an evaluation action such as stop, pause,

show, and hide. Both pause and show actions enrich assertions with the sense of in-code

tracing and debugging with print statements, where a user can ensure that the evaluation has

reached some points and the referenced variables satisfy the condition, see Section 11.4.5.

5. The ability to log the assertion’s evaluation result. This lets the user review the assertion

evaluation history for a specific run. Evaluated assertions are marked with True or False.

Some DT assertions may reference data in the future; those assertions are marked with Not

Valid for that exact state-based evaluation. Assertions’ intervals are marked with a counter

that tracks their order in the execution. If an assertion has never been reached, it is

distinguished by its counter value, which is zero in this case; see Section 11.4.7. Log

comparison of different runs is considered in future works.

129

6. Most importantly, DT assertions can go beyond the scope of the inserted location. Each

assertion may refer to variables or objects that were living in the past during previous states,

but not at evaluation point, and each assertion may compare previous variable values against

current or future values. Each DT assertion implicitly employs various agents to traces

referenced objects and retains their relevant state information in order to be used at evaluation

time.

11.3.1. Example #1: Loop Invariant

Checking a loop invariant is one of the most difficult tasks during conventional interactive

debugging. A programmer might end up with several breakpoints, watchpoints, and single stepping.

However, utilizing UDB’s temporal assertions allows a programmer to check a specific loop invariant

with one simple DT assertion. Figure 11.5 shows a selection sort algorithm that violates the loop

invariant marked with #1, whereas #2 is where the invariant might get violated. A UDB user can

check the invariant for this loop using the assert command provided in #3. This assertion can be

inserted at any line within this procedure. It will notify the user at the very first incident that the

asserted expression is violated.

Figure 11.5. Using Temporal Assertions to Check Loop Invariant

procedure selection_sort(A, n)

 local i, j, min, swap

 every i := 1 to n do

 {

 min := i

 every j := i+1 to n do

 if A[j] < A[min] then

 min := j

 #A[min] :=: A[i]

 if i ~= min then

 {

 swap := i

 i := A[min]

 A[min] := A[swap]

 A[swap] := i

 i := swap

 }

 }

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

assert always() { i < n } #3

#2

#1

130

11.3.2. Example #2: Sequence of Variable States

During a debugging session, sometimes, it is useful to check a variable value against its old

value (last or previous value). Programmers might accomplish this using a typical technique such as

breakpoints and single stepping. Figure 11.6 shows an iterative binary search algorithm. At the first

look, the implementation of this algorithm gives the impression that it is perfect. It does what a

typical binary search algorithm is supposed to do, checking for a mid value and dividing the searched

list into two parts until the searched item is found or the searched sub-list has no more elements to be

searched. However, in this particular implementation, marking the target sub-list might introduce an

infinite loop as a result of integer division shown in line #10. UDB allows a user to insert a temporal

assertion about any of these involved variables. This assertion may utilize the atomic agent named

old, which traces the last value of the target variable. The temporal assertion checks the agent’s value

against the current variable value during the entire execution of this procedure. It will break execution

at the very first incident found to violate the asserted expression.

Figure 11.6. Using Temporal Assertions to Validate Infinite Loops

procedure binarySearch(A, n, item)

 local found, first, mid, last

 first := 1

 last := n

 found := FALSE

 while first <= last & found ~= TRUE do

 {

 mid := (first + last) / 2

 if item < A[mid] then

 last := mid

 else if item > A[mid] then

 first := mid

 else

 found := TRUE

 }

 if (found = TRUE) then

return mid

 else

return -1

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

assert always() { old(mid) != mid } #2

#1

131

11.3.3. Example #3: Variables’ State from Different Scopes

A debugging process may include checking variable values from different scopes, see Section

11.1. Figure 11.7 shows a program that prints out the prime numbers from 1 to some x. Function

main() calls isPrime(), which returns true when the passed argument is a primary number. The

temporal assertion provided in #1 shows how to check the current local value of variable i against the

last value of variable i of function main() (main:i). This assertion assumes that the value of parameter

i should not change during the execution of isPrime(). However, because the programmer is

modifying the value of i, this assertion will evaluate to false at every change (temporal-state) to i in

this isPrime() function, and it will evaluate to false at every return (temporal-interval) from this

isPrime() function.

Figure 11.7. Using Temporal Assertions to Check Variables from Various Scopes

procedure main()

 local x, i

 writes(“ Please enter a positive integer number : “)

 x := read()

 write(“\n The following are the primary numbers <= ”, x)

 every i := 1 to x do

 if isPrime(i) then

 write(i , “ is a primary number “)

end

procedure isPrime(i)

 local k

 k := i

 i -:= 1

 while (i > 1) do

 {

 if k % i = 0 then

 fail

 i -:= 1

 }

 return k

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

assert always() { i == main:i } #1

132

11.4. Design

Temporal assertions do not replace traditional breakpoints or watchpoints, instead they provide a

technique to reduce their number, which means they are used to reduce the number of execution stops

and improve the overall process of investigation. These temporal assertions advance breakpoints with

agents of temporal logic operators, see Section 11.5. At a stop, besides the source-level debugging

functionalities, the user can delete, enable, disable, and modify existing assertions, or even insert new

assertions at any location in the buggy program source code; all without the need to recompile the

target program source code or to reload it under the debugger. UDB supports three kinds of Dynamic

Temporal Assertions (DTA):

1. Past-Time Temporal Assertions

2. Future-Time Temporal Assertions, and

3. All-Time Temporal Assertions.

Each of these three kinds has its own temporal interval, see Section 11.4.1. These DTAs can reference

execution properties and other internal extension agents such as the atomic data and behavioral agents

discussed in Section 10.4 of the previous Chapter.

11.4.1. Temporal State

Each reached assertion has at least one temporal interval. This interval consists of a sequence of

temporal states. Temporal states are defined based on the referenced execution object, which may

reference execution behaviors, data flow, and control flow. For example:

1. Variables’ temporal states are defined based on their assignments and/or references

2. Procedures’ temporal states are defined based on their behavior such as call and return

3. Loops’ temporal states are defined based on their number of iterations

4. Data structures’ temporal states are defined based on their activities. For instance, a stack’s

temporal states are defined by its basic operations of pop() and push(), and a queue’s

temporal states are defined by its basic operations of add() and remove().

11.4.2. Temporal Interval

Temporal interval is defined by the assertion scope and kind. Assertion’s scope is defined based

on the source code location provided in the assert command. This scope is the procedure or method

surrounding the assertion location. Figure 11.8 shows the temporal interval for all three kinds of

133

temporal assertions in reference to the provided location. Together, the assertion’s scope and kind

define the temporal interval. In particular:

1. Temporal Intervals of Past-Time temporal assertions start at entering the assertion scope

(calling the scope procedure) and end at reaching assertion’s source code location for the very

first time after entering the scope.

2. Temporal Intervals of Future-Time temporal assertions start at reaching assertion’s source

code location for the very first time after entering the assertion scope and ends at exiting the

assertion scope (returning from the scope procedure). In this kind of temporal assertions, the

source code location can be hit more than once before the interval is closed.

3. Temporal Intervals of All-Time temporal assertions start at entering assertion’s scope and

ends at exiting that scope; regardless of the provides source code location.

Figure 11.9 compares temporal intervals between all three kinds of temporal assertions and

shows how these intervals relate to each assertion’s source code location. Part A shows an example of

a Past-Time temporal assertion, which has different temporal intervals in each hit. Parts B and C

shows the temporal intervals for this assertion when it is used as a Future-Time assertion and All-

Time assertion respectively. Each temporal interval consists of one or more temporal states; see

Section 11.4.2. During a debugging session, it is possible for a user to have multiple assertions, each

with multiple temporal intervals, and each interval with multiple temporal states. See Figures 11.9,

11.10, and 11.11.

Figure 11.8. Temporal Assertions: Scope & Interval

………….

prints odd numbers in [x .. 1]

procedure printOddNumbers(x)

 local i := 0

 if x%2 = 0 then x -:= 1

 while (x ~= 0) do

{

 write(" x = ", x)

 x -:= 2

 i +:= 1

 }

 return i

end

………….

Concerned
Location

Interval of
Future-Time
Assertions

Interval of
All-Time

Assertions

(Scope)

Interval of
Past-Time
Assertions

134

11.4.3. Assertion’s Evaluation

UDB’s temporal assertions are evaluated in the debugger as if they were part of the buggy

program source code. By default, whenever an assertion evaluates to false, the source-level debugger

stops execution in a manner similar to a breakpoint. The debugger transfers control to the user with an

evaluation summary. Furthermore, the assertion’s log gives the user the ability to review the

evaluation behavior of each assertion. Each temporal assertion runs through three levels of

evaluations:

1. State-based temporal level (single state change)

2. Interval-based (a sequence of consecutive states), and

3. Overall execution-based (a sequence of consecutive intervals)

Each assertion is evaluated based on 1) its temporal-state, which is triggered by any change to

the assertion referenced objects, and 2) its temporal-interval, which is triggered by reaching the end of

assertion’s temporal interval. See Figures 12.10 and 12.11.

A. Past-Time Temporal Assertions

Start

Program

End

Program

 [1..a] [1..b] … [1..r] … [1..n]

C. All-Time Temporal Assertions

Start

Program

End

Program

 [1..a] [1..b] … [1. .r] … [1..n]

B. Future-Time Temporal Assertions

Start

Program

End

Program

 [1..a] [1..b] … [1..r] … [1..n]

 : Temporal Interval : Source Code Location []: Sequence of States

Figure 11.9. Temporal Assertions Evaluation

135

Figure 11.11. Sample Evaluation of Various Temporal Assertions

UDB’s
Debugging

Session

DTA 1 [S11 S12 …. S1a] [1..a]
 [S21 S22 …. S2b] [1..b]

 [Sj1 Sj2 …. Sjr] [1..r]
 [St1 St2 …. Stf] [1..f]

T or F T or F

DTA 2 [S11 S12 …. S1a] [1..a]
 [S21 S22 …. S2b] [1..b]

 [Sj1 Sj2 …. Sjr] [1..r]
 [St1 St2 …. Stf] [1..f]

T or F T or F

DTA n [S11 S12 …. S1a] [1..a]
 [S21 S22 …. S2b] [1..b]

 [Sj1 Sj2 …. Sjr] [1..r]
 [St1 St2 …. Stf] [1..f]

T or F T or F

T or F

T or F

T or F

Figure 11.10. Sample Temporal Assertion’s Evaluation

H 1 [S11 S12 …. S1a] [1..a] T or F

H 2 [S21 S22 …. S2b] [1..b] T or F

H j [Sj1 Sj2 …. Sjr] [1..r] T or F

H t [St1 St2 …. Stf] [1..f] T or F

T or F

[1..n]

T or F

State Based

Temporal Level

T or F

Interval Based

Temporal Level

Overall

Temporal Level

136

11.4.4. Temporal’ Cycles and Limits

A temporal cycle is an integer that defines the maximum number of temporal intervals or

maximum number of temporal level evaluation times. The default value of cycle is &null, which

means to have unlimited evaluation. Temporal limit defines the maximum number of temporal states

considered in each temporal interval. The definition of temporal limit is changed based on the kind of

temporal assertion in reference. In particular:

1. In Past-Time temporal assertions, limit defines the maximum number of consecutive states

before reaching assertion’s source code location and after entering the assertion’s scope

2. In Future-Time temporal assertions, limit defines the maximum number of consecutive states

after assertion’s source code location is reached and before exiting the assertion’s scope

3. In All-Time temporal assertions, limit defines the maximum number of states before and after

assertion’s source code location is reached, all within the assertion’s scope.

The Default limit is defined by whatever temporal states (temporal interval) are encountered during

the execution of assertions’ scope and based in its temporal interval. The user can reduce the number

of temporal states considered in each temporal interval by setting this limit using the limit command.

11.4.5. Evaluation Suite

UDB’s DT assertions are supported with an evaluation suite of actions, see Table 11.1. These

actions add automation and tracing flavors. The default evaluation action is to hide the evaluation

result as long as it is true and only stop the execution when the evaluation result is false. However, the

user can change the default evaluation action that is performed when the assertion evaluates to true.

He/she may choose to pause after each evaluation for N seconds, or just to show that the assertion is

Table 11.1. UDB’s DT Assertions Evaluation Action Operators

Evaluation

Action
Descriptions

hide The evaluation will be hidden as long as it is True, otherwise it will break (default)

pause The evaluation will be paused as long as it is True, otherwise it will break

show The evaluation will notify the user with a printed message as long as it is True,

otherwise it will break

stop The evaluation will be stopped every time it evaluates, whether it is True or False

137

evaluated without pausing by printing an appropriate message. By default, the pause period is 5

seconds; however it can be changed by the user. During the pause, the user may hit a key that will

change the pause to stop (breakpoint behavior). These evaluation suites provide two advantages:

1. The user will know that the program has reached the assertion point and the assertion’s

evaluation result is true; similar to the semantics of tracing with in-code print statements, and

2. Without the need to stop and continue the execution manually, the execution will resume

automatically, unless the user interrupts and stops the execution for more investigation.

11.4.6. Temporal Assertions & Atomic Agents

Atomic agents are a special kind of internal extension agents. They expand the usability of DT

assertions and facilitate the ability to validate more specific data and behavioral relationships over

different execution states. When an atomic agent is used within an assertion, it retains and processes

data and observes behaviors in relevance to the used assertions. The assertion scope is what

determines when the agent should start to work and what range of data it should be able to retain and

process. For example, if the assertion uses the max(variable) or min(variable) agents, the agent

always retains the maximum or minimum respectively over the assertion temporal interval.

For more information, see Table 10.1 and Table 10.2 of Section 10.4 of the previous Chapter.

Those atomic agents add more advancement and flexibility to the usefulness of DT assertions and

their basic temporal logic operators. For example, DT assertions that reference atomic agents can

easily check and compare data obtained by these atomic agents, which encapsulate simple data

processing such as finding the minimum, maximum, sum, number of changes, or average.

In particular, suppose that a static variable is changed based on a conditional statement where it

is incremented when the condition is true and decremented when the condition fails. What if the user

is interested in the point at which this variable reaches a new maximum or minimum? DT assertions

provide a simple solution for such situations. The assertion number 1 of Figure 11.12 will pause the

execution when variable x becomes greater than or equal to y.

As another example, suppose the user is interested in the reasons behind an infinite recursion;

perhaps a key parameter in a recursive function is not changing. DT assertions provide a mechanism

to retain the parameter value from the last call and compare it with the value of the current call, see

assertion number 2 of Figure 11.12. If old(x) == current(x), the assertion will stop the execution and

hand control to the debugger where the user can perform further investigation. Of course, there are

138

other reasons that may cause infinite recursion, such as the key parameter value is changing in the

opposite directions on successive calls.

Moreover, DT assertions simplify the process of inserting assertions on program properties such

as functions’ return values, and loops’ number of iterations. For example, a user may insert a

breakpoint inside a function in order to investigate its return value, or place an in-code assertion on

the value of the returned expression. A DT assertion provides a simpler mechanism; see assertion

number 3 of Figure 11.12. Assertion number 4 of Figure 11.12 states that the while loop at line 50 in

test.icn file always iterates less than 100 times. Finally, assertion number 5 of Figure 11.12 shows

how to place a DT assertion on the number of calls to a function; the assertion will stop execution at

call number 1000. This particular assertion is hard to accomplish using conventional source-level

debugging features such as breakpoints and watchpoints.

11.4.7. Evaluation Log

An assertion log allows a user to review the evaluation history. The debugger maintains a hash

table for each assertion. It maps assertion’s intervals into lists with information about their temporal

state base evaluation. Each list reflects a temporal interval, which maintains the evaluation order and

result for each temporal state. Each list reflects one temporal interval, which they are maintained

based on their order too. Completely evaluated intervals are tagged with True or False. If the

evaluation process is already started, but the final result is still incomplete, perhaps the end of the

interval is not reached yet, these intervals are tagged with Pending until they are complete. This will

convert Pending into True or False. See Table 11.2. However, some assertions may never be

triggered for evaluation; this may occur because the execution never reached the assertion’s insertion

point during a particular run. These assertions have the hit counter set to zero.

(udb) assert test.icn:50 sometimep() { x < y }

(udb) assert test.icn:50 alwaysp() { old(x) != current(x) }

(udb) assert test.icn:50 alwaysf() { return(foo) > 0 }

(udb) assert test.icn:50 always() { iteration(while) < 100 }

(udb) assert test.icn:50 always() { call(baz) < 1000 }

Figure 11.12. Sample of Different DT Assertions

1.

2.

3.

4.

5.

T

a

bl

e

1

1.

2.

U

D

B

’s

D

T

A

ss

er

ti

o

139

11.5. Assertion Language

DT assertions are applied using the assert command. Different assertions may utilize different

Temporal Logic operators, each of which may utilize out scope objects and atomic agents. In order to

evaluate the value of DT assertions within a typical source-level debugger, UDB has been extended

with three kinds of internal agents performing various temporal logic operations. These agents work

as temporal logic operators. The assertion language is comprised of a set of ten temporal logic

operators. These agents are divided into three categories based on their temporal time and scope.

Table 11.3 categorizes these temporal logic operators based on the three kinds of temporal assertions.

The extended UDB enables programmers to add, delete, and modify ad-hoc DT assertions in the

buggy program source code during debugging sessions. These assertions are capable of referencing

variables beyond the scope of the assertion location and utilize information beyond the current state

of execution.

Table 11.4. DTA Temporal Logic Operators

A. Past-Time Operators

S
o

u
rc

e
C

o
d
e

L
o

ca
ti

o
n

B. Future-Time Operators

alwaysp(cycle) { expr } alwaysf(cycle) { expr }

sometimep(cycle) { expr } sometimef(cycle) { expr }

since(cycle) { expr } until(cycle) { expr }

previous(cycle) { expr } next(cycle) { expr }

C. All-Time Operators

always(cycle) { expr }

sometime(cycle) {expr }

Table 11.3. UDB’s DT Assertions Evaluation Log

Evaluation

Action
Descriptions

True The evaluation is finished and the result is True (state-based & interval-based)

False The evaluation is finished and the result is False (state-based & interval-based)

Pending
The evaluation is triggered but the interval is not complete yet, future

information is still possible.

140

11.5.1. Syntax

The syntax of DT assertion language consists of ten temporal logic operators, see Table 11.3.

Each Temporal Logic operator consists of an integer cycle parameter and a body. The body may

reference program variables, and objects, combined with any of the data and behavioral extension

agents described in Table 10.1 and Table 10.2 of Section 10.4. Variables and atomic agents can be

combined with any of the relational and propositional logic operators. See Figure 11.13.

DT assertions can reference execution properties such as variables, objects and their attributes,

functions, methods, and control structures such as loops. If the referenced property is a variable from

another function scope, it must be prefixed with the name of its function (i.e. foo:variable), whereas

if that function is a method, the variable is prefixed with the method name prefixed with its class

name (i.e. class::foo:variable). Of course, if that variable is a field of a record or an object, the dot

operator is used (i.e. object.variable). Moreover, execution properties can be passed into any of the

data and behavioral extension macros provided in Table 10.1 and Table 10.2 of Section 10.4.

Figure 11.13. UDB’s Temporal Assertions Syntax

(udb) assert location temporal-agent [(cycle, limit)] { expression } : true_behavior

location ::= file-name:line-number | procedure-name

temporal-agent ::= all-time-agent | past-time-agent | future-time-agent

all-time-agent ::= always(cycle) | sometime(cycle)

past-time-agent ::= since(cycle) | previous(cycle) | alwaysp() | sometimep()

future-time-agent ::= until(cycle) | next(cycle) | alwaysf() | sometimef()

expression ::= agent operator agent

agent ::= literal | variable | atomic-agent

variable ::= variable-name | procedure :: variable-name

operator ::= relational-operator | propositional-logic-operator

relational ::= < | > | <= | >= | = | !=

propositional-logic ::= &&(and) | ||(or) | ==> (implies)

cycle ::= integer

limit ::= integer

file-name ::= string

line-number ::= integer

true-behavior ::= hide | show | pause | stop

141

11.5.2. Past-Time Operators

This category consists of four Past-Time Temporal Logic Operators (agents); see Table 11.3,

part A above. These operators utilize information retained between an entering assertion’s scope and

a reaching assertion’s source code location. At insertion time, the debugger starts retaining relevant

information to be used during the assertion’s evaluation. When the execution reaches the virtual

execution point, where the assertion is hooked in the buggy program space, the assertion temporal

interval is evaluated. If the evaluation is not able to complete due to some missing information—

maybe out-of-scope referenced data is never used during assertion’s lifetime, the assertion evaluation

is tagged with Not Valid. This category consists of four temporal assertions:

1. alwaysp() { expression } : asserts that expression must always hold (evaluate to true) for

each, temporal state, temporal interval, and during the whole execution

2. sometimep() { expression } : asserts that expression must hold at least once for each

temporal interval, and during the whole execution.

3. previous() { expression } : asserts that expression must hold right at the last state before the

end of the temporal interval.

4. since() { condition ==> expression } : asserts that expression must hold right after condition

is true up until the end of the temporal interval and for each interval.

11.5.3. Future-Time Operators

This category consists of four Future-Time operators; see Table 11.3. Part B. These operators

utilize information retained between a reaching of assertion’s source code location and a leaving of

assertion’s scope. The agents of those operators start watching for referenced objects when the

evaluation is triggered, where the debugger starts retaining relevant information until assertion’s

temporal interval is evaluated completely. If the execution is terminated before assertion’s interval is

complete, the user is able to check temporal states in that incomplete temporal interval. This category

consists of four temporal assertions:

1. alwaysf() { expression } : asserts that expression must always hold (evaluate to true) for

each, state, temporal interval, and during the whole execution.

2. sometimef() { expression } : asserts that expression must hold at least once for each

temporal interval, and during the whole execution.

142

3. next() { expression } : asserts that expression must hold right at the very first state in the

temporal interval

4. until() { condition ==> expression } : asserts that expression must hold from the beginning

of the temporal interval up until condition is true or the end of the temporal interval and for

each interval.

11.5.4. All-Time Operators

This category consists of two All-Time operators; see Table 11.3, Part C. These two operators

are based on the time interval between an entering assertion’s scope and an exiting assertion’s scope.

When the assertion scope is entered, the assertion starts retaining relevant information and evaluates

its temporal states. When the execution exits the assertion scope, the assertion temporal interval is

evaluated. This category consists of four temporal assertions:

1. always() { expression } : asserts that expression must always hold (evaluate to true) for each,

state, temporal interval, and during the whole execution

2. sometime() { expression } : asserts that expression must hold at least once for each temporal

interval, and during the whole execution

11.6. Implementation

DT assertions are virtually inserted into the buggy program source code on the fly during the

source-level debugging session. UDB’s static information is used to assist the user and check the

syntax and the semantic of the inserted assertion. Each assertion is associated with two sets of

information 1) event-based and 2) state-based. The debugger automatically analyzes each assertion at

insertion time in order to determine each set. It finds the kind of agents that are required to be

encountered in the evaluation process. If any extension agent is used, the debugger establishes an

instance of that agent and associates it with its relevant object.

The host debugger maintains a hash table that maps each assertion source code location into its

related object (agent). The string format file_name:line_number is used as a key to access the

assertion object in the hash table. The assertion object is responsible for maintaining and evaluating

its assertion. It contains information such as 1) the parsed assertion, 2) a list of all referenced

variables 3) a list with all temporal intervals and their temporal states, and 4) the assertion event

mask, a set of event codes to be monitored for each assertion; this event mask includes the events

mask for any of the referenced agents.

143

Execution events are acquired and analyzed in real time. Some events are used to control the

execution whereas others are used to obtain information in support of the state-based technique. For

example, an assertion is anchored in the execution state based on the E_Line event code, which is

associated with the actual line number (event value). Other events such as the E_Assign and

E_Value are used to watch and trace an assertion’s referenced variables.

Each assertion has its own event and value masks, which are constructed automatically based on

the assertion. A union set of all enabled assertion event masks is unified with the debugging core

event mask. The result is a set of events requested by the debugging core during the execution of the

buggy program. This set is recalculated whenever an assertion is added, deleted, enabled, or disabled.

On the fly, UDB’s debugging core starts asking the buggy program about this new set of events. A

change on any assertion event mask alters the set of events forwarded by the debugging core to that

assertion object.

Temporal logic agents automatically obtain the buggy program state-based information to

evaluate DT assertions. Each agent automatically watches assertion referenced variables and retains

their information in the debugger space. Some of the information is obtained through the values

associated with the reported event code while others are obtained using AlamoDE high-level

primitives.

UDB’s Temporal Assertions are designed as extensions that utilize the IDEA architecture. There

is an abstract class named Assertion, it is inherited by all of the ten other temporal logic operators.

See Figure 11.14 for the UDB’s class diagram for Temporal Assertions.

11.7. Summary

DT assertions bring an extended version of in-code assertion techniques, found in mainstream

languages such as C/C++, Java, and C#, into a source-level debugging session. These temporal

assertions help users test and validate different relationships across different states of the execution.

Furthermore, assertion evaluation actions such as show and pause provide the sense of debugging

and tracing using print statements from within the source-level debugging session. They give the user

a chance to know that the execution has reached that point and the asserted expression evaluated to

true; it also gives the user the ability to interrupt and stop the execution for more investigation. The

ability to log the assertion evaluation result provides the user with the ability to review the evaluation

process. A user can check a summary result of what went wrong and what was just fine.

144

Source-level debuggers provide the ability to conditionally stop the execution through different

breakpoints and watchpoints. At each stop, a user will manually investigate the execution by

navigating the call stack and variable values. Source-level debuggers require a user to come up with

assumptions about the bug and let him/her manually investigate those assumptions through

breakpoints, watchpoints, single stepping, and printing. In contrast, DT assertions require the user to

come up with logical expressions that assert execution properties related to bug’s revealed behavior

and the debugger will validate these assertions. Asserted expressions can reference execution

properties from different execution states, scopes, and over various temporal intervals. Furthermore,

unlike conditional breakpoints and watchpoints, which only evaluate the current state, DT assertions

are capable of referencing variables that are not accessible at evaluation time (not active in the current

execution state).

DT assertions do not replace traditional breakpoints or watchpoints, but they offer a technique to

reduce their number and improve the overall investigation process. DT assertions reduce the amount

of manual investigation of the execution state such as the number of times a buggy program has to

stop for investigation.

Figure 11.14. UDB’s Temporal Assertions UML Diagram

145

Part V

Evaluation and Results

146

Chapter 12

Performance and Evaluation

This chapter evaluates the primary contributions of this dissertation. First, before evaluating

major extensions included in AlamoDE, it highlights Alamo’s features and their advantages for event

based debugging tools. Then, it discusses a new set of extensions that are needed to facilitate some of

the debugging features. This chapter measures the effects of these extensions on both debugging tools

and the Unicon language. Second, this chapter evaluates IDEA’s features within UDB, including its

internal and external agents. It highlights the simplicity of these extensions and their advantages and

measures their performance. Finally, this chapter ends the evaluation discussion with a look at

dynamic temporal assertions, which are introduced for the very first time in a typical source-level

debugger for sequential programming.

The evaluation discussion is focused on capabilities and performance, which are considered a

major step toward practicality. Part of the performance evaluation includes measuring the affected

execution time. Unless indicated otherwise, seven different programs were considered during these

experiments. These programs are rsg, scramble, genqueen, ichartp, igrep, miu, and pargen. See

Appendix B for more details about these programs.

Moreover, unless indicated otherwise, the execution time is measured using the UNIX time

command. It gives timing statistics about a specific program. The time is shown in three categories:

1) real time, which represents the elapsed time between the start of the process and its termination,

2) user time, which is the total number of CPU-seconds that the process spent in user mode, and

3) system time, which is the total number of CPU-seconds that the process spent in kernel mode.

Moreover, these experiments were performed on Unicon version 11.6 running on a 32-bit Intel

machine. This machine runs Linux open SUSE 11.0. It has the 1.6 T2050 core 2 Duo CPU and a 2

GB of RAM.

12.1. AlamoDE

AlamoDE inherits Alamo’s implicit virtual machine instrumentation, which requires no special

compilation and no source code or bytecode modification. It also provides an underlying mechanism

to forward an event into another debugging tool that is loaded into the same virtual machine. This

allows various debugging tools to share execution events. AlamoDE is used to build the extensible

source-level debugger called UDB presented in Chapter 9. UDB integrates new automatic detection

147

techniques that can be found in trace-based debuggers such as ODB [10,13]. One measurement of

AlamoDE’s effectiveness is that UDB is a working prototype source-level debugger; it imitates most

of GDB’s functionalities with less than 10K lines of source code, including its IDEA architecture.

This contributes as a proof by example to the value of AlamoDE as a debugging framework.

AlamoDE’s 121 kinds of events and their relevant values provide ample information about the

execution of the monitored program. AlamoDE’s form of in-process debugging does not intrude into

the execution of the target program space. At the same time, it has the advantage of providing direct

access to the target program space through a set of high level primitives (built-in functions). If the

monitor program requires information beyond the reported event code and value, it can employ these

primitives. For example, variable values can be obtained using the variable() primitive, keyword

values can be obtained using the keyword() primitive, and procedure values can be checked using the

proc() primitive, see Chapters 5-7. This mixture of monitored events and direct access features allows

complex communication patterns between the monitor program and the target program. For example,

a monitor program may decide to further investigate the execution state of the target program based

on a particular event code and value.

Experiment

Most monitored programs generate millions of execution events, which affect the scalability of

the monitoring task in both time and space. Often, event-based monitors have to provide their own

application level filtering mechanism. AlamoDE provides high level facilities to dynamically

customize monitored events. For example, UDB’s monitored events are adapted on the fly to the

current active debugging features including its extension agents. AlamoDE provides two levels of

event filtering mechanisms, the event mask and value mask. These masks are applied on event codes

and their values respectively. They are checked by the instrumentation before events are reported to

the monitor program [106, 107, 108].

 Table 12.1 shows three programs rsg, genqueen, and scramble. Each of these programs is

monitored for three different modes. The monitored modes are 1) all kinds of events; no event mask

or value mask is used, 2) one kind of events specified by the event mask, but without utilizing the

value mask; the monitored event is E_Deref, and 3) one kind of events with a specific monitored

event code and value; this utilizes both of the event mask and value mask, the monitored event is

E_Deref and its value is one of the dereferenced variables. Table 12.1 shows the number of reported

events form each program and its monitoring mode. It also provides the corresponding average

running time, each monitoring mode is observed for five different runs and the average time of these

five times is calculated. The time is measured using the UNIX time commands. Figure 12.1 shows

148

the execution time of these three programs and compares it against the unmonitored version

(standalone mode).

Table 12.1. AlamoDE No Mask vs. Event Mask vs. Value Mask

Program Monitoring Mode
Number

of Events
Real/S User/S Sys/S

rsg 0 No Monitoring none 0.060 0.028 0.027

rsg 1 all events — No Mask 744817 2.765 1.756 0.977

rsg 2 E_Deref —Event Mask 61611 0.385 0.211 0.126

rsg 3 E_Deref —Event Mask + Value Mask 75 0.137 0.097 0.023

genqueen 0 No Monitoring none 0.295 0.130 0.026

genqueen 1 all events —No Mask 5926941 22.072 13.287 8.611

genqueen 2 E_Deref —Event Mask 537410 2.425 1.600 0.751

genqueen 3 E_Deref —Event Mask + Value Mask 75546 0.876 0.718 0.136

scramble 0 No Monitoring none 0.249 0.156 0.045

scramble 1 all events —No Mask 2125740 7.762 4.914 2.809

scramble 2 E_Deref —Event Mask 182162 0.962 0.658 0.288

scramble 3 E_Deref —Event Mask + Value Mask 15288 0.422 0.348 0.063

ichartp 0 No Monitoring none 0.691 0.653 0.029

ichartp 1 all events — No Mask 31622681 58.934 11.519 47.277

ichartp 2 E_Deref —Event Mask 2108995 9.202 6.354 2.818

ichartp 3 E_Deref —Event Mask + Value Mask 110921 2.807 2.571 0.206

igrep 0 No Monitoring none 0.108 0.070 0.015

igrep 1 all events —No Mask 1790572 6.441 4.120 2.301

igrep 2 E_Deref —Event Mask 195307 0.902 0.570 0.306

igrep 3 E_Deref —Event Mask + Value Mask 1006 0.280 0.229 0.027

miu 0 No Monitoring none 1.340 0.672 0.042

miu 1 all events —No Mask 4550772 17.002 10.591 6.349

miu 2 E_Deref —Event Mask 212421 1.999 1.242 0.358

miu 3 E_Deref —Event Mask + Value Mask 24 1.549 0.874 0.065

pargen 0 No Monitoring none 0.028 0.011 0.015

pargen 1 all events —No Mask 27193 0.163 0.098 0.066

pargen 2 E_Deref —Event Mask 1351 0.044 0.020 0.018

pargen 3 E_Deref —Event Mask + Value Mask 16 0.033 0.012 0.018

149

Figure 12.1. Execution Time- Standalone vs. Monitored Mode

0%

20%

40%

60%

80%

100%

Orignal Real Increased Real

0%

20%

40%

60%

80%

100%

Original User Increased User

0%

20%

40%

60%

80%

100%

Original Sys Increased Sys

150

12.2. Alamo’s New Extensions

This section provides an evaluation for some of the new extensions implemented as addition to

the original Alamo framework for debugging support. It evaluates two of the most important

additions that have their effects on the Unicon language and the debugging process. The evaluation

targets the performance of trapped variable implementation and compares it to original Alamo’s

variable reading mechanism. It also evaluates the syntax instrumentation and its impact on the size of

both the compiled object program and the executable binary format.

12.2.1. Trapped Variable Assignment

Since both the monitor and target program share the same address space, the monitor program

has almost direct access to the space of the target program. This access method is facilitated through

high level primitives supported by Alamo and its AlamoDE support within Unicon’s virtual machine.

The variable() function can be used by the monitor program to read and write target program’s

variables—local and global names. When this variable() function is used to read a value, there is no

overhead induced on the space by this trapped block, it only acquires a copy of the variable value

being read. But, if this function is used to change the value of the target program’s variable, then for

security reasons, instead of directly referencing this target variable, a block of trapped variable is

implicitly allocated.

This block points to the target variable and contains two more fields; one contains the title of the

block to be distinguishable by the internal implementation of the virtual machine, and the other is an

integer counter used to validate the number of context switches between the time at which the

reference is obtained and the time at which the final value is written. This block is allocated with

every assignment to the target program space. The size of this block depends on the target machine.

For example, on an Intel 32-bit machine, the size of this block is 12 bytes, whereas it is doubled on an

AMD 64-bit machine. After the assignment is complete, this block becomes garbage and is cleaned

by the language garbage collector.

12.2.2. Syntax Instrumentation

Syntax instrumentation is implemented to provide syntax information to the monitor program

upon its request. This syntax information is inquired through monitoring the E_Syntax event or

through a direct access to the &syntax keyword. Direct access to a keyword allows the monitor

program to request the currently executed syntax name at any point, whether the syntax event is being

monitored or not. In contrast, monitoring the E_Syntax event entails that the virtual machine

151

instrumentation should include a new event that is reported to the monitor program at the start and

finish of each major syntax construct.

The implemented technique requires the ability to make the syntax information available to

Unicon’s runtime system. This was achieved based on an already available line and column number

table that is included in the executable bytecode. Each entry in this table is based on two special

object code commands line and colm introduced by the translator icont and written into the compiled

object code file (ucode). Then these two commands are assembled by the linker based on two pseudo

virtual machine instructions Op_Line and Op_Colm respectively. The result is one sparse table that

maps Interpreter Program Counters (IPCs) into relevant line and column numbers found in the actual

compiled source code. See Section 6.3.

Originally, this table was only used to provide source code information for runtime errors and

tracing facility. The first part in syntax instrumentation is augmenting this table with additional syntax

information. The layout of this table is not changed except for the 5 bits taken from the original 16

bits column, reducing it to 11 bits. However, since this table is sparse, it does not provide a one-to-

one map from each source code location to its relevant IPCs. These original entries were found unable

to provide sufficient and precise syntax information. A set of new entries were added to mark

monitored syntax constructs such as major control statements and loop structures. The

implementation of this syntax instrumentation affects Unicon programs in four ways.

1. The effect on the size of the object code as a result of the new synt object code command

instruction used to mark the syntax code in the compiled object code.

2. The effect on the linking time used to assemble various object files into one bytecode

executable. The Unicon linker is extended with new pseudo virtual machine instruction named

Op_Synt, which is used to read the synt command and insert the syntax code along with the

already provided line and column number in to the table.

3. The effect on the size of the executable as a result of new entries in the line/column number

table since the original entries were error oriented and not intended to monitor syntax

information, which required inserting new entries surrounding major syntax constructs. In

addition to what is already in the table, few numbers of entries were added to mark entering

and exiting major syntax constructs such as control statements.

4. The effect on the execution time of the monitored program as a result of the new E_Syntax

event that occurs whenever a major syntax constructs starts or finishes.

152

The first three problems are general ones. They affect all Unicon programs unless the virtual

machine is built with the NoSrcSyntaxInfo defined in define.h. This macro disables syntax

instrumentation support—i.e. #define NoSrcSyntaxInfo. The fourth point affects only the monitored

programs, especially when they include the E_Syntax event in their event mask.

The reporting frequency of this new E_Syntax event depends on the target program. However,

it is been monitored along with the E_Line and E_Deref events that are reported for new lines and

variable dereferencing respectively. These events were monitored in rsg, scramble, genqueen,

ichartp, igrep, miu, and pargen. The ratio of these reported events is shown in Figure 12.2.

In order to evaluate these effects, six different programs were measured, before and after the

syntax instrumentations, based on three categories: 1) the size of the bytecode, 2) the size of the

executable, and 3) the compiling and linking time. Table 12.2 shows the impact of syntax

instrumentation on the compiled object code. It measures the size of six object files before and after

the syntax instrumentation on an Intel 32-bit machine. Then, it shows the amount of increase in the

object code size imposed on each one of these files in kilobytes. Table 12.3 shows the impact of this

new syntax instrumentation on the binary executable. It measures the sizes of six different

executables before and after the syntax instrumentation and finds the difference in kilobytes. In Table

12.2, the first three object files are linked directly into the executable provided in Table 12.3 without

any other user or library files being involved. The last three files are big programs; they were linked

from several ucode files. Figures 12.3 and 12.4 shows the percentage of these increases and compares

them to the original sizes. Table 12.4 shows the compiling/linking time before and after the syntax

instrumentation, whereas Figure 12.5 shows the percentage increase in these times.

Figure 12.2. E_Deref, E_Line, E_Syntax, & E_Pcall Events Ratio to all Other Events

0%

2%

4%

6%

8%

10%

12%

rsg scramble genqueen ichartp igrep miu pargen

R
at

io
 o

f
R

e
p

o
rt

e
d

 E
ve

n
ts

E_Deref Ratio E_Line Ratio E_Syntax Ratio E_Pcall Ratio

153

Table 12.2. Syntax Instrumentation Effects on Object-Code (ucode) Formats

File Name Size Before Syntax/KB Size After Syntax/KB Difference/KB

rsg.u 30.28 35.77 5.49

scramble.u 4.97 5.96 1.00

genqueen.u 4.20 5.01 0.81

unicon.u 89.23 103.79 14.56

ivib.u 319.26 365.79 46.52

ui.u 77.08 84.96 7.88

Table 12.3. Syntax Instrumentation Effects on Executable (bytecode) Formats

Program Name Size Before Syntax/KB Size After Syntax/KB Difference/KB

rsg 17.03 17.23 0.20

scramble 3.28 3.29 0.01

genqueen 2.86 2.88 0.02

unicon 678.90 684.44 5.54

ivib 392.42 398.70 6.28

ui 590.15 600.87 10.72

Figure 12.3. The Percentage Increase in the Size of the Object Code File

Figure 12.4. The Percentage Increase in the Size of the Executable Program

0%

20%

40%

60%

80%

100%

rsg.u scramble.u genqueen.u unicon.u ivib.u ui.u

ki
lo

b
yt

e

Size Before Syntax/KB Increased Size/KB

97%

98%

99%

100%

rsg scramble genqueen unicon ivib ui

K
ilo

b
yt

e

Size Before Syntax/KB Increased Size/KB

154

Table 12.4. Syntax Instrumentation Effects on Compiling/Linking Time

Before Syntax Instrumentation After Syntax Instrumentation

Program Name Real User Sys Real User Sys

rsg 0.035 0.0272 0.0072 0.0378 0.0288 0.0088

scramble 0.015 0.0088 0.0048 0.0156 0.0096 0.0056

genqueen 0.0148 0.0048 0.0072 0.015 0.008 0.0076

unicon 0.198 0.176 0.0176 0.2224 0.1912 0.024

ivib 3.3344 3.2368 0.072 3.5148 3.4096 0.076

ui 3.8236 3.6384 0.16 3.905 3.6776 0.1784

Figure 12.5. The Percentage Increase in Compile/Link Times

80%

85%

90%

95%

100%

rsg scramble genqueen unicon ivib ui

Original Real Time Increase in Real Time

0%

20%

40%

60%

80%

100%

rsg scramble genqueen unicon ivib ui

Original User Time Increase in User Time

0%

20%

40%

60%

80%

100%

rsg scramble genqueen unicon ivib ui

Original Sys Time Increase in Sys Time

155

12.3. IDEA’s Evaluation

The ability to easily extend a debugging tool is very important, because there is no debugging

tool good enough to debug all kinds of bugs. Extensibility simplifies the task of improving these tools

with new techniques. An IDEA-based debugger allows different debugging tools (extension agents)

to simultaneously debug a program during the same debugging session (same run). IDEA’s core is a

mediator that coordinates various extension agents. However, one of the biggest considerations in this

type of design is performance. In IDEA, a considerable amount of time is spent on:

1. Processing the instrumentation in the target program

2. Performing context switches between the target program and IDEA’s debugging core

3. Filtering the received events in the monitor program (the main debugging tool)

4. Forwarding events from IDEA’s core to extension debugging agent(s).

12.3.1. Procedure Call vs. Co-Expression Context Switch

Although co-expression context switches are lightweight and managed in-process without the

knowledge of the operating system, they are still costly; one of the reasons is their high occurrence

rate. Migrate extension agents to internal or use them in a call-back mode will enhance the overall

performance. In order to measure the gained processing speed for migrated agents, this dissertation

starts with an experiment that measures the basic difference in time between procedure calls and co-

expression context switch.

Figure 12.6. Time of Procedure Calls vs. Context Switches

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Local Program Procedure
Calls

Foreign Program Procedure
Calls

Co-Expression Context
Switches

A
ve

ra
ge

 T
im

e

156

Figure 12.6 compares the difference in time between local procedure calls, foreign procedure

calls, and co-expression context switches. The comparison shows that procedure calls (both local and

foreign) reduces the processing time by about one third. Data is collected from a very simple Unicon

program provided in Figure 12.7. This program is used in 10 different runs, and the average time of

these runs is used in Figure 12.6. The Unicon keyword &time is used to measure the elapsed CPU

time in milliseconds.

Figure 12.7. Sample Unicon Program Measures Procedure Calls vs. Co-Expression

A simple program test the basic difference in time between local procedure calls,

foreign procedure calls, and co-expression context switches.

$define NUM 10000000

procedure main(argv)

local t1, t2, t3, ce, foreign_prog, foreign_proc

t1 := &time

 every i := 1 to NUM do p()

 write("The cost of local procedure calls : ", &time - t1,”ms.”)

foreign_prog := load(argv[1])

foreign_proc := variable(“pp”, foreign_prog)

t2 := &time

 every i := 1 to NUM do foreign_proc()

 write("The cost of foreign procedure calls : ", &time – t2, “ms.”)

 ce := create | 1

 t2 := &time

 every i := 1 to NUM do @ce

 write("The cost of context switches : ", &time – t3, “ms.”)

end

procedure p()

 return 1

end

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

157

12.3.2. Extension Agents

Originally, external extension agents were used through context switches. For events that are

forwarded to external debugging agents, two extra context switches are added to the debugging cost.

There is a total of four context switches. The first two are between IDEA’s debugging core and the

target program, and the second two are between the debugging core and the external agent. If more

than one agent requests the same reported event code, then each one of those agents will add another

two context switches.

For instance, if there is a total of m agents loaded under the IDEA based source-level debugger,

and n of these m agents request a specific event code; note that n <= m. The total number of context

switches for this particular event is 2*n+2. This number is repeated each time this event is reported.

During a debugging session (monitoring task), if this event is reported E number of times, then there

is a total of Nc context switches during this session, see Equation 12.1.

If Ec is the cost of each one of these context witches, where little c stands for the context switch,

then the cost of reporting this event to these n agents is Cc, and the total cost of reporting this event

during the session is TCc, both of which are shown in Equations 12.2 and 12.3 respectively. TCc

depends on three variables E, Ec and n. UDB and its IDEA architecture utilizes AlamoDE’s direct

access and event filtering mechanisms to reduce these two factors to the least minimum possible

based on the current state of AlamoDE.

In contrast, when these n agents are used in the standalone mode (directly monitoring the target

program—IDEA is not involved), the user must run them separately; one at a time. This eliminates

the ability to compare their outcomes from within the same debugging session and precludes their

potential for collaborations. However, the cost of reporting this event to an agent runs in the

Cc = Ec * (2*n+2)

 Equation 12.2. Cost of Forwarding an Event to n Agents using Context Switches

Nc = E * (2*n + 2)

Equation 12.1. Number of Context Switches (E Events Reported to n Agents)

 TCc = E * Cc  TCc = E * (2Ec*n + 2Ec)  TCc = (E *2Ec *n) + (E *2Ec)

 Equation 12.3. Total Cost of Forwarding E Events to n Agents using Context Switches

158

standalone mode is 2Ec. That is because reporting an event requires a total of two context switches.

The total cost of reporting this event for each agent is C and the total cost of reporting this event to all

n agents is TC, see Equations 12.4 and 12.5 respectively.

Comparing TCc and TC from Equations 12.3 and 12.5 respectively, this comparison shows that

TC is less than TCc and the difference is C. This means that running these n agents in the standalone

mode saves a total of E*2Ec, which is the cost of reporting an event to one of these standalone agents.

If you would consider UDB as an extra tool, not just a coordinator, then its cost is justified. However,

even though utilizing these agents under a source-level debugger cost the performance a total of C,

the user gains the advantage of synchronous execution and the ability for these agents to collaborate

with each other during the same debugging session.

The previous discussion was about these extension agents that are loaded on the fly during the

debugging session and used through co-expression context switches. When an agent migrates to

internal and is used through the inter-program procedure calls, the user gains extra performance.

Section 12.3.1 shows that replacing context switches with local or foreign procedure calls lowers the

overhead imposed by these context switches by approximately one third. In other words, the cost of 2

context switches is equivalent to the cost of 3 procedure calls (local or foreign).

This means, replacing context switches with procedure calls will reduce Ec to Ep, where little p

stands for procedure calls. Ep ~= 2/3 Ec. This will change the formula presented in Equation 12.3.

The new formula is presented in Equation 12.6. This equation retains the second part (2Ec*E) because

there is one remaining context switch between the target program and UDB. Figure 12.8 shows these

notations in the three scenarios and compares them. Part A shows the use of these agents in the

standalone mode, whereas parts B and C compare these agents when they are used in context switches

vs. procedure calls.

C = E * 2Ec

Equation 12.4. Cost of Reporting an Event to an Agent in Standalone Mode

Cp = (2Ep*n + 2Ec)*E  Cp = E * 2(Ep*n + Ec)  Cp = E * 2 (2/3Ec*n + Ec)

Equation 12.6. The Cost of Reporting an Event to n Agents Using Procedure Calls

TC = (E * 2Ec) * n

Equation 12.5. Total Cost of Reporting an Event to n Agents in Standalone Mode

159

TP Agent1
2Ec

Standalone

TP Agent2
2Ec

Standalone

TP Agentn
2Ec

Standalone

C = 2Ec * n

A. The use of debugging agents in standalone modes

TP UDB
2Ec

Context
Switch

Agent1
2Ec

Event Forward-Context Switch

Agentn 2Ec

C = 2Ec * n

Agent2

2Ec

Cc = 2Ec * n + 2Ec

B. The use of debugging agents through co-expression context switches

TP UDB
2Ec

Context
Switch

Agent1
2Ep

Event Forward- Procedure call

Agentn 2Ep

Cp = 2Ep * n

Agent2

2Ep

Cp = 2Ep*n + 2Ec

C. The use of debugging agents through local and foreign procedure calls

Figure 12.8. IDEA’s Use of Debugging Agents

160

12.3.3. Experiment

Earlier in Section 12.3.2, the Equations 12.3, 12.5, and 12.6 theoretically compared the use of

extension agents through context switches, in the standalone mode, and through procedure calls

respectively. Now, in order to find in practice the amount of slowdown imposed by a debugging agent

that is running as a separate tool, or as an extension agent under IDEA, a simple agent is used to

monitor a very frequent event, E_Deref. This event occurs whenever a variable is dereferenced inside

the target program. The agent is kept simple; its computation is limited to counting the total number

of monitored events, see Figure 12.9. This allows us to measure the event forwarding technique

without worrying about the algorithm implemented within the agent itself.

In order to find the effect of this agent on the debugging process, six different experiments were

performed. In each experiment the same three target programs are used; each program is monitored

for five different runs and the average time of these five runs is measured. The first program is rsg.

The second program is scramble. The third program is genqueen. Table 12.5 shows the measuring

time of these six experiments. The time is measured using the UNIX command time, which produces

the real, user, and sys times. These times are presented in seconds. These six experiments were

performed on the same machine used in Section 12.3.1.

The first experiment is used to find the running time of these three programs when they are used

without any monitoring; see Table 12.5 row #1. The second experiment is used to find the impact of

UDB on these three programs. Each of these programs was loaded and run under UDB; the session

neither enables any of the extension agents nor does it apply any of the classical debugging

commands, see Table 12.5 row #2. The third experiment is to find how much time the simple

standalone agent slows down the execution of these programs. The experiment runs the agent in the

standalone mode, which loads, runs, and monitors these three programs, see Table 12.5 row #3.

The fourth experiment is to find how much time the same agent takes if it is used in the method

call approach under IDEA. The same three programs were used as target programs under UDB, see

Table 12.5 row #4. The fifth experiment is to find how much time the same agent takes if it is used as

external agent under UDB through the inter-program procedure call. The same three programs were

used as target programs under UDB, see Table 12.5 row #5.

161

Figure 12.9. Sample Agent Counter

$include "evdefs.icn"
$ifndef StandAlone
class EventCounter : Listener(
$else
class EventCounter(
 eventMask, # an event mask
$endif
 count # count the number of events
)
method handle_E_Deref()
 count +:= 1
end
method handle_E_Exit()
 write("Total # of events is : ", count)
end
initially(name, state)
$ifndef StandAlone
 self.Listener.initially(name, state)
$endif
 count := 0
 eventMask := cset (E_Deref || E_Exit)
end

StandAlone is defined when this tool is used as a standalone monitor.
otherwise, this tool can be statically linked into the main udb source code
$ifdef StandAlone
link evinit

This main() procedure is only used in the standalone mode
or udb's external co-expression mode
procedure main(tp)
 local mask, obj
 EvInit(tp) | stop(" cannot initilalize target program" || tp[1])
 obj := EventCounter()

 while EvGet(obj.eventMask) do
 if &eventcode == E_Deref then obj.handle_E_Deref()
 else obj.handle_E_Exit()
 return
 handle_Events()
end

This procedure is only used by the inter-program procedure calls
procedure handle_Events(code, value)
 static obj
 initial{ obj := EventCounter()
 return obj.eventMask }
 &eventcode := code
 &eventvalue := value
 if &eventcode == E_Deref then obj.handle_E_Deref()
 else obj.handle_E_Exit()
end
$endif

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

The Agent class

Agent’s

procedure main()

used in the

standalone mode

Agent’s interface for

 inter-program

procedure calls

162

Finally, the sixth experiment is to find how much time the same agent takes if it is used in the

external approach through the context switch event forwarding method. In each run, the method

cmdLoad() is called once to load that agent. Then the method Forward() is called frequently in

IDEA’s evaluator loop to forward events to this agent. This method’s underlying implementation

checks whether the received event is in the event mask of every one of those loaded agents before

utilizing the EvSend() primitive, which forwards this event to the agent. The same three programs

are used as target programs under UDB, see Table 12.5 row #6. In this final experiment, in order to

check the maximum overhead for this approach, the loading time of the external debugging tool is

already included and added to the overhead imposed by updating the external agent with the received

event. Figure 12.10 shows the average time for these six experiments in seconds.

In Figure 12.11, the chart compares the total number of events that can be processed by an

extension agent during one second. It compares IDEA’s three event forwarding mechanisms: 1)

internal procedure calls used by internal extension agents, 2) external procedure calls used by external

Table 12.5. Performance of IDEA’s Extension Agents

Approach rsg scramble genqueen

Time Real/s User/s Sys/s Real/s User/s Sys/s Real/s User/s Sys/s

1 No Monitoring

Involved
0.076 0.047 0.022 0.244 0.178 0.041 0.333 0.154 0.029

2 Directly

Under UDB
0.108 0.078 0.026 0.253 0.203 0.042 0.328 0.166 0.044

3 Directly Under

the Agent
0.421 0.295 0.119 1.153 0.860 0.282 2.939 2.197 0.708

4 Internal

Procedure Call
1.064 0.878 0.134 2.735 2.412 0.305 7.710 6.781 0.782

5 External

Procedure Call
1.106 0.896 0.131 2.860 2.504 0.327 8.027 7.000 0.852

6 External

Context Switch
1.239 0.972 0.209 3.226 2.641 0.547 8.907 7.353 1.491

163

extension agents that utilize inter-program procedure calls, and 3) external co-expression used by

external extension agents that utilize co-expression context switches. The chart in Figure 12.12

extends the comparison to compare agents running under IDEA against the same agent used in the

standalone mode.

The standalone approach relatively proves its speed and efficiency, where it handles more than

twice the number of events that are handled by the external agent under UDB. Using an external

agent that is running under UDB provides a worse time performance than either the standalone

approach or the internal (built-in) to UDB approach. However, this approach is still a valuable

technique because of its flexibility and usability; especially for testing purposes. It allows users to

write their own debugging and dynamic analysis tools and uses them on the fly from the inside of a

typical source-level debugging session.

Figure 12.10. The Average Time for the Experimental Agent in Seconds

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6

Ti
m

e
 in

 S
e

co
n

d
s

Real/S User/S Sys/S

164

12.4. UDB’s Evaluation

One of the biggest considerations in the design of an event-based source-level debugger is the

performance in terms of space and time. Most event-driven debuggers suffer from scalability problem

Figure 12.11. IDEA's Extension Techniques

 Figure 12.12. IDEA’s Extension Agents vs. Standalone Mode

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000
65,000
70,000

Internal -pcall External-pcall External-coexpr

N
u

m
b

e
r

o
f

Ev
e

n
ts

 /
Se

co
n

d

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Standalone Mode Internal -pcall External-pcall External-coexpr

N
u

m
b

e
r

o
f

Ev
e

n
ts

 /
Se

co
n

d

165

because they must handle a huge volume of trace data. In regard to the processing time of events,

UDB spends a considerable amount of time processing the instrumentation provided by AlamoDE, on

the context switches between UDB and the buggy program, and on the event filtering and processing

inside UDB’s main debugging core (the evaluator). In this regard, the most frequent events are

organized to be checked first.

Experiment

In order to find how much slowdown is imposed on a program running under UDB, the time is

measured for a Unicon program running on a Linux machine without UDB, then the time is measured

for the same program running on the same machine but under UDB; different runs were performed

and in each run one of the debugging techniques was enabled, the measured time in Table 12.6 is the

average of three different runs. The program is the Unicon translator itself, its size is 609KB and the

virtual machine size is 790KB.

Table 12.6 shows that UDB at present provides acceptable performance for ordinary debugging

operations, with additional VM support needed for breakpoints and watchpoints. The AlamoDE

architecture has been shown viable for debugging, but it will become more attractive with further

tuning. More serious performance slowdowns are associated with various automatic debugging

techniques, which may introduce complex dynamic analyses in order to function, see Figure 12.13. In

Table 12.6. The Time of Different UDB Debugging Features

Feature Real/s User/s Sys/s

1 Normal (No UDB) 1.17 0.99 0.12

2 Under UDB 1.39 1.17 0.11

3 Tracing Procedure Calls 2.19 1.77 0.28

4 Tracing String Scanning Activities 2.38 1.98 0.27

5 Tracing All Procedure Activities 3.37 2.79 0.49

6 Breakpoint 3.68 3.45 0.14

7 Tracing Built-in Function Calls 4.61 3.75 0.79

8 Watchpoint 7.98 6.51 1.38

9 Tracing Type Conversion 8.99 6.74 1.98

10 Detect Variable Type Change 14.17 11.24 2.77

11 Detect Subscript Fails 14.91 11.41 3.33

12 Detect Zero Time Loops 15.01 12.17 2.66

166

practice programmers can enable/disable individual techniques between breakpoints or between steps

in the debugger. Programmers only have to pay for expensive features when they need them, but

further reducing the cost of the various automatic debugging features is a key to making them

practical for the mainstream languages.

12.5. DT Assertions Evaluation

DT assertions provide the ability to validate relationships that may extend over the entire

execution and check information beyond the current state of evaluation. DT assertions’ temporal logic

operators are internal agents used within the IDEA architecture. Those agents can reference other

atomic agents, which provide access to valuable execution data and behavior information. This

collaboration between agents can provide a helpful debugging technique and prove the value of the

IDEA architecture. However, the design and implementation of DT assertions encounters some

challenges and limitations discussed in the following subsections.

Figure 12.13. The Performance of UDB's Various Debugging Features

0

2

4

6

8

10

12

14

16

Ti
m

e
 in

 S
e

co
n

d
s

Real/s User/s Sys/s

167

12.5.1. Evaluation

In consideration of the performance in terms of time, the implementation of temporal assertions

utilizes a conservative assertion-based event-driven tracing technique. It only monitors relevant

events; the event mask and value mask are generated automatically for each assertion at insertion

time. Temporal assertions are evaluated in three levels. First is the state based level, which depends

on any change to the referenced execution property. Second is the interval based level, which is

determined by the assertion scope and kind. Third is the overall evaluation level, which occurs once

per each execution. Different assertions can reference different execution properties. For this reason

various assertions will differ in their cost.

However, in order to generally assess the role of the three evaluation levels in the complexity of

these temporal assertions, let us assume that Es is the maximum cost of monitoring and evaluating a

state change within a temporal assertion. Furthermore, let us assume that n is the maximum number

of state changes during a temporal interval and m is the maximum number of temporal intervals

during an execution, see Figure 12.14. This means, the maximum cost of evaluating a temporal

interval for this assertion is Es*n and the maximum cost of an assertion during the whole execution is

(Es*n)*m which is equal to Es*n*m. Es includes the cost of event forwarding presented during

evaluating the IDEA architecture in Section 12.3.2. This means that part of Es is (2Ep + 2Ec), where

Ec is the cost of reporting an event to UDB and Ep is the cost of forwarding an event to the temporal

logic agent (internal agent). This means the Es dominates both n and m; state change is the main

performance issue in temporal assertions.

Furthermore, retained information is limited and driven by assertions’ referenced execution

properties. Assertions are virtually evaluated because they are in another execution space. The

evaluation occurs in the debugger space with data collected and obtained from the buggy program

space. The assertion log gives the user the ability to review the evaluation behavior of each assertion.

Temporal assertions use in-memory tracing. A table is allocated for all assertions; it maps each

assertion source code location to the instance object of the actual assertion. Another table is allocated

for each assertion; it tracks temporal intervals, each of which is a list (stack) with each of the state

based evaluation result. A third table is used to map assertion temporal intervals with their evaluation

result, each of which is one value True, False, or Not Valid. Then one variable is holding the up to

the point result which is either true or false. The dominating part in the used space is the number of

state changes, Es. Each state base evaluation is tracked with a record that keeps information about the

line number, file name, and the result.

168

Experiment

In order to find the impact of temporal assertions on the execution of the target program and the

debugging time, a simple temporal assertion is applied on a simple program. The program prints

numbers between 1 and 100,000; see Figure12.15. The temporal assertion is applied with various

sizes of temporal intervals. These intervals start at size 1, 100, 1000, 10,000, 50,000 and 100,000.

Table 12.7 shows eight kinds of runs, each is observed for five times and the average time of these

times measured. These kinds of runs range from measuring the time for the program in the standalone

mode (no monitoring is involved), monitored under UDB with no assertion applied, then with an

assertion that has various intervals. Figure 12.16 shows the impact of these temporal assertions of the

execution time.

Figure 12.14. State Based vs. Interval Based Evaluation

H 1 [S11 S12 …. S1a] [1..a]

H 2 [S21 S22 …. S2b] [1..b]

H j [Sj1 Sj2 …. Sjr] [1..r]

H m [St1 St2 …. Smf] [1..f]

State Based

Evaluation

Interval Based

Evaluation

Max # of

Intervals is m

Max # of

States is n

Figure 12.15. Sample Unicon Program Used to Measure Time of Temporal Assertions

A program that prints the numbers from 1..100000

procedure main(argv)

 local n := 100000

every i := 1 to n do write(i)

end

1

2

3

4

5

6

7

169

Table 12.7. Evaluation Time of Temporal Assertions

Feature Real/s User/s Sys/s

1 standalone 2.1 0.1 0.2

2 under UDB 2.2 0.2 0.2

3 sometime { i < n } 2.2 0.2 0.2

4 always (limit=100) { i < n } 2.7 0.2 0.2

5 always (limit=1000) { i < n } 2.7 0.3 0.2

6 always (limit=10000) { i < n } 3.9 1.5 0.2

7 always (limit=50000) { i < n } 8.1 6.2 0.5

8 always (limit=100000) { i < n } 13.6 12.4 0.9

Figure 12.16. Temporal Assertions Evaluation Time

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

T
im

e
in

 S
ec

o
n

d
s

Ave Real Ave User Ave Sys

170

12.5.2. Challenges

Debugging with DT assertions provides advantages over typical assertions and conditional

breakpoints and watchpoints. At the same time, it faces many challenges, some of which are based on

associating assertions with the executable’s source code, evaluating assertions in the debugger, and

the source-level debugger’s ability to obtain and retain relevant event-based and state-based

information with reasonable performance.

First, if an assertion makes a reference to a variable, which is not accessible from within the

assertion’s scope, the debugger should automatically trace those variables and retain their relevant

state information to be used at the assertion evaluation time. This allows a DT assertion to access data

that is not live at the assertion’s evaluation time.

Second, what if the assertion source code location is overlapping with a statement? Which one

should be evaluated first, the assertion or the statement? A conservative approach may consider the

assertion evaluation after the statement only if the statement has no variables referenced by the

assertion, or if the statement does not assign to any of the assertion referenced variables. However, if

the statement will assign to any of the assertion referenced variable, the assertion can be evaluated

before and after the statement evaluation. If the two evaluations are different such as one is true and

the other is false, or both are false, the assertion will stop the execution and hand the control to the

debugger and the user to investigate. This dissertation, takes the simplest approach which is to

evaluate the assertion before the statement. Furthermore, if an assertion is not overlapping with an

executable statement, the AlamoDE framework cannot report a line number event from a non

executable line. A line number event is only reported when a statement in that line number is fetched

to be executed. This is reached by checking the assertion source code location before confirming that

the assertion is inserted successfully. It checks whether the line number is empty or it is commented

out.

Finally, if a referenced variable is an object or a data structure such as a list, this can cause two

problems. First, the object is subject to changes under other names because of aliasing. Second, if the

object is local, it may get disposed by the garbage collector before the evaluation time. The

implementation could be extended to implement trapped variables that would allow us to watch an

element of a structure or utilize an aliasing tracing mechanism to retain all changes that may occur

under different names. The implementation of temporal assertions presented in this dissertation does

not go after heap variables.

171

Chapter 13

Conclusion and Future Work

13.1. Conclusion

This dissertation presented three primary results. The first contribution is AlamoDE, which

facilitates the ability to build various custom-defined debugging, dynamic analysis, and visualization

tools. These tools can be written and tested as standalone programs, which utilize execution event

patterns to detect suspicious execution behaviors and potential bugs. AlamoDE provides high level

control over the execution of the buggy program with efficient instrumentation and no intrusion on

the buggy program space. AlamoDE is integrated in the Unicon language with very low cost (other

than code size) in the production virtual machine. This integration allows the debugging tool to run on

the virtual machine synchronously along with the buggy program. The debugger and the buggy

program run in two different co-expressions and the buggy program is the only one affected by the

instrumentation. AlamoDE’s support for dynamic event customization provides the ability to change

the set of requested events on the fly by adding/removing events’ codes to/from the event mask.

Event filtering based on events’ values substantially reduces the amount of reported events and the

number of context switches. This dissertation proved that:

1. AlamoDE is sufficient to support various event-based debugging tools and techniques,

including typical source-level debugging functionalities, with sufficient performance for

production use

2. A high level event-based framework reduces the development cost of debugging tools and

simplifies their extensions

3. AmaloDE’s in-process debugging support allows for more efficient and complex

communication patterns between the debugging too and its target program.

The second contribution is IDEA extension architecture, which facilitates a source-level

debugger with an extension mechanism. It provides the ease to simultaneously run those custom-

designed tools (or agents) in conjunction with the typical source-level debugging session. The

combination of AlamoDE and IDEA simplify the experimenting process with new custom-defined

debugging tools and techniques, which may include:

172

1. Improvement to traditional techniques such as watchpoints and tracepoints

2. The ability to integrate verification and validation techniques such as dynamic temporal

assertions

3. The simplicity to develop, test, and integrate new automated and dynamic analysis techniques

of debugging agents

The final contribution of this dissertation is UDB, which is an event-driven source-level

debugger that utilizes the IDEA architecture in its debugging core. See Figure 13.1. Under UDB, a

user can easily load standalone debugging tools as external agents or incorporate them as internals

within the source code of the debugger, all with no source code modification. It allows programmers

to run a chosen suite of dynamic analysis agents (internals and externals) on the fly from within its

typical console-based interactive debugging session. Furthermore, this event-driven agent-oriented

implementation provides many advantages over traditional source-level debuggers, such as

simplifying the process of extending the debugger with new debugging features. UDB’s

implementation and ease of extensibility demonstrate the value of AlamoDE and IDEA, and prove

that:

1. A source-level debugger built on top of a high level event-driven debugging framework can

surpass ordinary debuggers with more debugging capabilities, and it is easier to extend and

maintain than a conventional debugger. For example, UDB is imitating GDB’s functionalities

with less than 10K lines of source code

2. It simplifies applying common source-level debugging functionalities such as breakpoints,

watchpoints, stepping and continuing.

3. It facilitates complex debugging techniques in a simpler design that breaks the debugging

process into small task-oriented agents. These agents allow for more debugging features with

dynamic analysis and automatic debugging techniques

4. It provides the ability to employ agents, in the source-level debugging session, only when they

are needed. The debugger can easily provide simple commands to load, unload, enable, and

disable any number of external extension agents on the fly during a source-level debugging

session

5. It enables custom-defined debugging tools to be used as external agents or registered as

internal permanent debugging features. This encourages users to write their own high level

standalone debugging agents.

173

Figure 13.1. Dissertation Contributions

 Temporal Logic

Operators (Agents)

General Purpose

Agents

Internal Library of Agents

Call

Return
The Extension

Architecture (IDEA)

Return
On the fly Extension Agents:

Threads #i to #j

UDB: Thread #0

D
eb

u
g
g
in

g
 S

ta
te

UDB’s

Debugging

Evaluator

(Main Loop)

Call

Session

Start/Resume Return/Suspend

Console

Start/Resume Return/Suspend

UDB’s Debugging Core

Data

Stack

Source Code

Breakpoints

Watchpoints

Tracepoints

Stepping

Nexting

Built-in Agents

IDEA’s

Evaluator

Very lightweight

 co-expression

 context switch

VM Support

Target Programs:

Threads #N to #M

A
la

m
o

D
E

 F
ra

m
ew

o
rk

B
u

g
g

y

 P
ro

g
ra

m
 EvGet()

Event

Standalone

External

Agents

 EvGet()

EvSend() Event

174

13.2. Discussion

Many debugging techniques such as algorithmic debugging, event grammars, and delta

debugging provide automation for specific kinds of bug hunts. Trace-based debuggers such as the

ODB [47, 48], TOD[49, 50], and the WhyLine [24, 25] debuggers provide advanced debugging

techniques by recording the whole program’s history of execution in order to provide an answer for a

question that can be asked. In particular, ODB sacrifices most of the standard debugging techniques

such as breakpoints, watchpoints, stepping and continuing. It only provides a navigation tool for

execution history. When it comes to changing the state of the running program during the debugging

session, ODB forces the user to trace the complete program first, before the user is able to trace-back

and re-start the execution from some middle point with new value assigned to a variable. These trace-

based debugging approaches encounter some limitations. For instance, the WhyLine debugger is

limited for programs that run for a couple of minutes whereas TOD builds a distributed database that

stores and indexes every state change during the execution.

In contrast, UDB preserves the debugging techniques found in classical debuggers such as GDB,

but it integrates new automatic detection techniques that could be found in trace-based debuggers.

These techniques provide the user with answers about the execution in terms of specific behavior.

Instead of recording the complete program state and letting the user investigate or ask questions,

UDB’s approach is to employ agents that monitor the execution of the program and watch for some

specific behaviors that may cause a bug. This has the advantage of better scalability and providing

answers on the fly.

UDB’s agents overcome several of the limitations of standard source-level debuggers. For

example, typical source-level debuggers heavily rely on the user’s ability to investigate the execution

state. If a bug does not crash the program’s execution, then a user has to step inside the execution

state with anticipated breakpoints and watchpoints. Often, users start with breakpoints that are far

before or after the bug’s root cause. They end up re-running and single stepping through the program

repeatedly; each with different breakpoints and watched variables. In contrast, UDB has the potential

to bring more debugging techniques into the source-level debugging session. Instead of recording the

complete program state and letting the user investigate, UDB’s agents monitor the execution of the

program and watch for specific behaviors that may indicate a bug or a suspicious activity. This has

the advantage of better scalability and providing answers on the fly. Often, these agents add

indispensable value into the debugging process with moderate impact on the performance of the

buggy program. UDB’s agents provide capabilities that can be found in trace-based debuggers with

the advantage of being small and task-oriented for better scalability.

175

In general, the slowdown imposed by automatic and dynamic analysis techniques depends on the

algorithms used and their implementations within the debugging tool or agent. Compared with the

slowdown of many automatic debugging tools, the performance of UDB is reasonable. For example, a

suite of debugging agents imposes at most 20 times slowdown on the execution of the buggy program

over an uninstrumented execution mode. However, the true test of UDB’s performance will be

whether it enables debugging agents that justify their time cost by the value they provide to

programmers. To place this in perspective, a debugger such as valgrind imposes a 20 to 50 times

slowdown, and it does not provide the interactive debugging environment that UDB provides, where

the user can be selective about which agents to enable or disable from within a breakpoint based

debugging session. This combination of valgrind-style dynamic analysis within an interactive

debugger provides more effective debugging.

13.3. Limitations

AlamoDE still has some limitations. First, AlamoDE’s instrumentation has no cheap means of

filtering an event based on source file name; in particular there is no E_File event. For instance, when

the source-level debugger has a breakpoint on specific line, it will receive the E_Line event whenever

that event code and value are satisfied regardless of which source file the execution encountered that

event in. This limitation is inherent in the instrumentation. Like most other binary executables,

Unicon’s binary format has little information about the source code, which must be checked

separately from the binary. In particular, the line number event E_Line is reported or checked for

lines that are about to be executed. However, if the user placed a breakpoint on an empty line, then

this event will never get reported by the interpreter of the target program. So, in the implementation

of a source-level debugger, the debugger itself checks the current version of source code to validate

whether that line is an empty line or not. This mechanism works as long as the executable binary is

built from this current version of the source code. However, if the source code is ever modified

without rebuilding the executable binary, this may cause confusion for the user.

In general, UDB agents may utilize execution information before the current execution state.

This has the advantage that an agent can be built to memorize and analyze what a user might do when

debugging with a typical source level debugger. However, those external extension agents that are

loaded during the debugging session can only analyze information after their loading/activation time.

In general, agents will not be able to record or detect execution properties that were executed when

the agent is not present or is disabled. This feature can have one advantage only if the user

intentionally wants the agent to detect and analyze a portion of the execution, in this case the user can

176

manually enable and disable agents between different points; in particular, when the target program is

stopped because of a breakpoint, watchpoint, or single stepping.

For DT assertions that may be inserted in the middle of the debugging session and contain

references to variables that may have been processed before the insertion time, the debugger will not

be able to evaluate such assertions until those variables are executed sometime while the assertion is

live. Three options were available. First, lazy evaluation: if any of the assertion’s referenced variables

is live while the assertion is live, the debugger will put this assertion on the waiting list until all of its

relevant data is available. Second, totally ignore the assertion evaluation at that point; hoping that in

future hits the data will be available. Finally, stop the execution and provide reasoning about the

unsuccessful evaluation. This dissertation took the simplest approach, which is to mark this hit with

Not Valid and not consider it in the overall evaluation process. Furthermore, the debugger is able to

retain assertion relevant information as long as the assertion is enabled. The debugger will not be able

to evaluate data that was processed when the assertion was disabled. However, this may have some

advantages in some cases where the user is interested in ignoring a portion of the data between two

points of execution.

13.4. Future Work

Previous event-based source-level debuggers, such as Dalek [42] encountered performance

obstacles. AlamoDE provides usable debugging support proved in the implementation of UDB and its

IDEA extension architecture. However, relatively compared with an uninstrumented execution mode,

IDEA has room for significant improvement in its performance for extension agents. This slowdown

in the processing speed is based on the compulsory overhead associated with the current event’s

reporting and forwarding mechanism, which is formulated as context switches between the external

agents and the debugging core. Performance can be further improved by buffering related events and

avoiding extra context switches.

Another potential improvement is to offload the cost of external agents onto additional processor

cores. This requires extending Unicon with real concurrency, where different co-expressions can be

off loaded onto different processors. Furthermore, the value mask is used as a second filtering

mechanism to reduce the number of reported events and further improve the monitoring performance.

However, IDEA’s debugging core only knows about the event mask of the external agents. Adding

support for external agents’ value masks would help improve the performance whenever that value

mask is in use by the agent. Another debugging context where further work is needed is to debug a

long running real time system that is interactive with the user and maybe with other users over the

177

network. The debugger needs to be plugged into the running program without interfering with its

event-driven execution.

Further future work might aim at reducing the number of context switches by adopting a new

communication paradigm. At present IDEA’s debugging core plays the role of a central server in a

star network. A ring-based architecture where each agent forwards events to another agent instead of

having a central coordinator would reduce context switches by up to 50%. Another possible

architecture is a broadcasting mechanism where the buggy program broadcasts events to all secondary

debugging tools. Furthermore, expand UDB/IDEA capabilities to include an optional inter-process

communication can support collaborative debugging tools that may share a real time debugging

session. It also allows experimentation with foreign agents that may live on different machines and

communicate with a network protocol.

Another area of future work may focus on improving the process of debugging using UDB. This

can be achieved by adding more agents that utilize automatic debugging techniques for classes of

bugs that are difficult to catch using standard techniques such as duplicated control logic, wrong

operator, and aliasing-related bugs. Furthermore, UDB’s classical debugging features, such as

breakpoints and watchpoints, are provided through monitored events and event filtering. Even though

these techniques perform well during debugging, improving their performance can be achieved by

further implementation of common techniques such as trapped virtual machine instruction for

breakpoints, and trapped variable for watchpoints. Moreover, the increased number of utilized agents

associates relatively with maintenance efforts during the debugging session. For example, more

agents can easily mean more opened windows for the programmer to manage and organize. This has

some relations to the current user interface maintained by UDB that is centered on a command line

interface—it is better to have a GUI interface with a mechanism that integrates dynamic agents within

the same GUI. These GUI interfaces can be reached by different means such as: 1) building an

Eclipse plug-in for UDB, 2) extending DDD to support UDB, or 3) extending Unicon’s IDE to

include UDB support.

DT assertions are augmented with temporal logic operators. In this approach, assertions are

added on the fly during the debugging session and virtually executed in the buggy program source

code. Those assertions have capabilities that go beyond the limitations of conditional breakpoints and

watchpoints, and the typical in-code assertions, which either of them cannot check the value of a

variable that is active in the caller activation record. However, a case study can show how end-users

can take advantage of temporal assertions and how fast it allows them to locate the root cause of a

178

bug (or a suite of bugs). This study can compare these newly introduced debugging techniques to

standard techniques found in a typical debugger such as GDB.

13.5. Extensibility to Other Languages

The availability of the virtual machine and its runtime system made the current implementation

for all of UDB, IDEA, and DTA economically feasible. The choice of Icon/Unicon as a target

implementation is a sponsor requirement. However, the approach can be extended to other languages

and debuggers, which is very important to increase the usability of these features. In this regard, a

subset of the Alamo framework used by IDEA for Unicon debugging has been implemented for

monitoring ANSI C and Python on both Sparc Solaris and Intel Linux. Future work may extend UDB

and its IDEA debugging facilities to these languages, or port them to run on other debugging

platforms such as JPDA [23]. Another potential future work is to use an instrumentation framework,

such as ASM [111], PIN [112], and ATOM [113], as a substitute for AlamoDE. For example, Java

may utilize different implementation of DT assertions. Any JPDA based source-level debugger, such

as Eclipse, can be extended with similar implementation. The implementation of this extension will

be relatively similar to the current implementation since both JPDA and AlamoDE provide an event-

driven debugging model. Java debuggers that use instrumentation frameworks (whether it is a third

party instrumentation framework such as ASM or a native instrumentation package such as

java.lang.instrument) can be extended by facilitating those frameworks for DT assertions with

different tweaks to the current implementation.

On the other hand, DT assertions’ initial implementation within an event-driven source-level

debugger and a virtual machine based language does not limit them to this kind of debugger. For

example, compiled languages such as C and C++ can take advantage of a third party instrumentation

framework. Another way is to extend an existing source-level debugger such as GDB. GDB is already

implements breakpoints by inserting illegal instructions and facilitates software implementation for

watchpoints. Those can be extended to support automatic data collection for DT assertions. However,

DT assertions may increase the number of inserted illegal instructions, which may produce a

performance problem. A simpler approach to facilitate DT assertions for C and C++ programs would

be to extend the implementation of GDB’s front-end debugger DDD [8]. Extending DDD would

provide a free GUI interface. DDD already utilizes automatic techniques to obtain and visualize

execution data. Extending DDD with DT assertions could be straight forward to adapt from already

used techniques. Of course, the implementation will be different.

179

Appendices

180

Appendix A: Dynamic Temporal Assertions

This appendix provides sample temporal assertions that can be used in a UDB debugging session.

A.1. Past-Time Assertions

Temporal Intervals of Past-Time temporal assertions start at entering the assertion scope (calling

the scope procedure) and end at reaching assertion’s source code location for the very first time after

entering the scope

A.1.1. Past-Time Temporal Logic Operators

1. alwaysp() { expression }

asserts that expression must always hold (evaluate to true) for each, state, temporal interval,

and during the whole execution.

2. sometimep() { expression }

asserts that expression must hold at least once for each temporal interval, and during the whole

execution.

3. previous() { expression }

asserts that expression must hold right at the last state before the end of the temporal interval

4. since() { condition ==> expression }

asserts that expression must hold right after condition is true up until the end of the temporal

interval and for each interval.

A.1.2. Example of Past-Time Assertions

1. (udb) assert test.icn:50 alwaysp() { x < 10 }

asserts that always in the procedure that contains line 50, the value of x is less than 10

2. (udb) assert test.icn:50 previous() { x < y }

asserts that the last in the procedure that contains line 50, the value of last value x, before the

end of the interval, is less than y

3. (udb) assert test.icn:50 since() { x=0 ==> x<0 }

asserts that always after x is 0 then x is less than 0 up until the end of the interval which is by

reaching the source code of the assertion.

181

A.2. Future-Time Assertions

Temporal Intervals of Future-Time temporal assertions start at reaching assertion’s source code

location for the very first time after entering the assertion scope and ends at exiting the assertion

scope (returning from the scope procedure). In this kind of temporal assertions, the source code

location can be hit more than once before the interval is closed

A.2.1. Future-Time Temporal Logic Operators

1. alwaysf() { expression }

asserts that expression must always hold (evaluate to true) for each, state, temporal interval,

and during the whole execution.

2. sometimef() { expression }

asserts that expression must hold at least once for each temporal interval, and during the

whole execution.

3. next() { expression }

asserts that expression must hold right at the very first state after the start of the temporal

interval

4. until() { condition ==> expression }

asserts that expression must hold from the beginning of the temporal interval up until

condition is true or the end of the temporal interval and for each interval.

A.2.2. Example of Future-Time Assertions

1. (udb) assert test.icn:50 alwaysf() { x < 10 }

asserts that always in the procedure that contains line 50, the value of x is less than 10

2. (udb) assert test.icn:50 next() { x < y }

asserts that the last in the procedure that contains line 50, the value of last value x, before the

end of the interval, is less than y

3. (udb) assert test.icn:50 until() { x=0 ==> x<0 }

asserts that always after x is 0 then x is less than 0 up until the end of the interval which is by

reaching the source code of the assertion.

182

A.3. All-Time Assertions

Temporal Intervals of All-Time temporal assertions start at entering assertion’s scope and ends

at exiting that scope; regardless of the provides source code location

A.3.1. All-Time Temporal Logic Operators

1. always() { expression }

asserts that expression must always hold (evaluate to true) for each, state, temporal interval,

and during the whole execution

2. sometime() { expression }

asserts that expression must hold at least once for each temporal interval, and during the

whole execution

A.3.2. Example of All-Time Assertions

1. (udb) assert test.icn:50 always() { x < 10 }

asserts that always in the procedure that contains line 50, the value of x is less than 10

2. (udb) assert test.icn:50 sometime() { x < y }

asserts that at least one time in the procedure that contains line 50, the value of x is less than y

3. (udb) assert test.icn:50 sometime() { x < foo:y }

asserts that always in the procedure that contains line 50, the value of x is less than last/current

value of y from procedure foo

183

Appendix B: Evaluation and Performance

This appendix provides detailed information about the performance information and the

experiments conducted through this dissertation.

B.1. Experimental Programs

During the evaluation of the research conducted in this dissertation, a suite of seven programs

are used as monitored targets during the experiments. These programs are:

1. rsg.icn stands for random string generator. It generates randomly selected sentences from a

grammar. It was written by Ralph E. Griswold.

2. genqueen.icn program solve an arbitrary-size n-queens problem. The program solves the

non-attacking n-queens problem for (square) boards of arbitrary size. The problem consists of

placing chess queens on an n-by-n grid such that no queen is in the same row, column, or

diagonal as any other queen. The output is each of the solution boards; rotations not

considered equal. It generates all possible solutions for the n-queen problem. It is mostly an

algorithmic operation that uses generators. It was written by Peter A. Bigot.

3. scramble.icn program reads a document and re-outputs it in a cleverly scrambled fashion. It

performs string scanning intensive operations. It was written by Tenaglia.

4. ichartp.icn program implements a simple chart parser – a slow but easy-to-implement

strategy for parsing context free grammars. It operates in bottom-up fashion. This program

was written by Richard L. Goerwitz.

5. igrep.icn program is a string search utility that imitates to UNIX egrep. It uses the enhanced

regular expression supported by regexp.icn. It was written by Robert J. Alexander.

6. miu.icn program generates strings based on the MIU system. It was originally written by Cary

A. Coutant, and modified by Ralph E. Griswold.

7. pargen.icn program generates a parser for a context-free language. This program reads a

context-free BNF grammar and produces an Icon program that is a parser for the

corresponding language. It was written by Ralph E. Griswold.

184

B.2. Experimental Modes

The following tables shows the average time of the programs described in the appendix C.1.

Each of these programs is executed five times and the average of these five runs is calculated. These

programs are used in six experiments.

1. No monitoring involved which calculus the average time of each one of these program when it

runs in its normal execution without it being monitored by another program

2. Under UDB represents the execution time of the program is measured when it is used under

UDB without any command involved. The monitored events are E_Exit, E_Error, and

E_Signal

3. Standalone mode represents that each one of these programs is run under the control of a

standalone monitor. This monitor is simple enough to count the number of reported events.

The same monitor is used under UDB in three different modes

4. Internal-pcall mode represents the target program is running under UDB and the extension

agent is used internally in the procedure mode

5. External-pcall mode represents the target program is running under UDB and the extension

agent is used in external mode that is utilizing the inter-program procedure calls

6. External-coexpr mode represents the target program is running under UDB and the extension

agent is used in the external mode that utilizes the co-expression context switch mode

B.3. Monitored Events

Out of AlamoDE’s 121 kinds of events, a suite of four events are monitored in the programs that

are presented in the previous section. These events are source code related events. E_Deref is

reported when a variable is dereferenced, E_Line is reported when execution changes from one line

number into another, E_Pcall is reported when a user procedure is called, and E_Syntax is reported

when a major syntax construct is entered or exited. These events are source code related events,

which are mostly used debugging purposes. In order to find the actual cost of these monitored events,

each of these events is monitored separately in each target program. The average time of the reported

events is measured.

185

Table B.1. rsg Execution Time

The rsg: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.060 0.028 0.027

2 Under UDB 0.142 0.081 0.027

3 Standalone Mode 0.271 0.167 0.077

4 Internal -pcall 0.592 0.475 0.076

5 External-pcall 0.639 0.510 0.082

6 External-coexpr 0.691 0.522 0.120

Figure B.1. rsg Average Execution Time

Figure B.2. rsg Reported Events

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

186

Table B.2. genqueen Execution Time

The genqueen: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.295 0.130 0.026

2 Under UDB 0.356 0.162 0.037

3 Standalone Mode 1.308 0.950 0.317

4 Internal -pcall 3.075 2.694 0.335

5 External-pcall 3.363 2.982 0.330

6 External-coexpr 3.770 3.044 0.629

Figure B.3. genqueen Average Execution Time

Figure B.4. genqueen Reported Events

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Ex
e

cu
ti

o
n

 T
im

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

100,000

200,000

300,000

400,000

500,000

600,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

187

Table B.3. scramble Execution Time

The scramble: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.249 0.156 0.045

2 Under UDB 0.281 0.189 0.048

3 Standalone Mode 0.528 0.396 0.122

4 Internal -pcall 1.034 0.895 0.120

5 External-pcall 1.140 0.994 0.122

6 External-coexpr 1.235 1.007 0.205

Figure B.5. scramble Average Execution Time

Figure B.6. scramble Reported Events

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

50,000

100,000

150,000

200,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

188

Table B.4. ichartp Execution Time

The ichartp: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.691 0.653 0.029

2 Under UDB 0.751 0.694 0.033

3 Standalone Mode 6.953 5.346 1.583

4 Internal -pcall 16.394 14.713 1.632

5 External-pcall 17.915 16.222 1.639

6 External-coexpr 19.828 16.522 3.265

Figure B.7. ichartp Average Execution Time

Figure B.8. ichartp Reported Events

0.0

5.0

10.0

15.0

20.0

25.0

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

189

Table B.5. igrep Execution Time

The igrep: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.108 0.070 0.015

2 Under UDB 0.131 0.090 0.022

3 Standalone Mode 0.590 0.444 0.141

4 Internal -pcall 1.424 1.251 0.152

5 External-pcall 1.571 1.385 0.159

6 External-coexpr 1.697 1.412 0.265

Figure B.9. igrep Average Execution Time

Figure B.10. igrep Reported Events

0.0

0.5

1.0

1.5

2.0

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

50,000

100,000

150,000

200,000

250,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

190

Table B.6. miu Execution Time

The miu: Execution Mode Real/s User/s Sys/s

1 No Monitor 1.340 0.672 0.042

2 Under UDB 1.370 0.715 0.056

3 Standalone Mode 1.592 1.031 0.162

4 Internal -pcall 2.165 1.602 0.158

5 External-pcall 2.234 1.740 0.170

6 External-coexpr 2.406 1.800 0.550

Figure B.11. miu Average Execution Time

Figure B.12. miu Reported Events

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

50,000

100,000

150,000

200,000

250,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

191

Table B.7. pargen Execution Time

The pargen: Execution Mode Real/s User/s Sys/s

1 No Monitor 0.028 0.011 0.015

2 Under UDB 0.088 0.061 0.018

3 Standalone Mode 0.043 0.021 0.017

4 Internal -pcall 0.115 0.086 0.021

5 External-pcall 0.133 0.089 0.023

6 External-coexpr 0.138 0.089 0.030

Figure B.13. pargen Average Execution Time

Figure B.14. pargen Reported Events

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Ti
m

e
 in

 S
e

co
n

d
s

Ave Real Ave User Ave Sys

0

500

1,000

1,500

2,000

E_Deref E_Line E_Pcall E_Syntax

N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

192

B.4. Average Monitored Events (E_Deref, E_Line, E_Syntax, E_Pcall)

This appendix shows the average of all experiments provided in Appendix B.3.

Table B.8. The Average Monitoring Time of All Events

Execution Mode Real/s User/s Sys/s

1 No Monitor 0.396 0.246 0.028

2 Under UDB 0.446 0.284 0.035

3 Standalone Mode 1.612 1.194 0.346

4 Internal -pcall 3.543 3.102 0.356

5 External-pcall 3.856 3.417 0.361

6 External-coexpr 4.252 3.485 0.723

Table B.9. Number of Reported Events

Execution Mode

Average Number of Reported Events

E_Deref E_Line E_Syntax E_Pcall Other

1 rsg 61,619 41,032 14,534 1,672 61,619

2 gengueen 182,162 35,568 7,150 1,001 182,162

3 scramble 543,746 248,062 41,266 16,789 543,746

4 ichartp 2,111,315 2,107,136 30,4027 136,194 2,111,315

5 igrep 197,311 148,270 20,088 16,013 197,311

6 miu 212,421 83,539 9,289 1,868 212,421

7 pargen 1,351 1,806 515 178 1,351

193

Figure B.15. Average Time of all Events

Figure B.16. Average of E_Deref, E_Pcall, E_Line, and E_Syntax Events

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Ti

m
e

 in
 S

e
co

n
d

s

Real/S User/S Sys/S

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

500,000

E_Deref E_Pcall E_Line E_Syntax

A
ve

ra
ge

 N
u

m
b

e
r

o
f

R
e

p
o

rt
e

d
 E

ve
n

ts

194

Appendix C: UDB Command Summary

This appendix provides a summary of UDB commands with more examples. It can be used as a quick

command reference.

C.1. Essential Commands

The most common commands that a user has to know in order to execute and control a program under

UDB.

udb program Starts UDB and loads the executable program into it.

run [arglist] Starts the already loaded program [with arglist].

b procedure Sets a breakpoint at the entry of procedure.

bt backtrace: displays the current program stack ; where is an alias of

this command.

p expr print: displays the value of expr.

c continue: resumes the running of the program.

n next: executes the next line and steps over any procedure call in it.

s step: executes the next line and steps into any procedure call in it.

C.2. What to Do after a Crash

The following commands are good enough to start an investigation after a crash on the buggy

program.

where displays the current execution stack

frame provides information about the currently selected stack frame

up moves the currently selected stack frame one frame up on the

execution stack (current frame + 1).

down moves the currently selected stack frame one frame down on the

execution stack (current frame - 1).

print allows you to print variable values.

C.3. Starting UDB

Different ways to start UDB and to load a program into it.

udb Starts UDB with no executable.

udb program Starts UDB and loads the executable program into it.

195

C.4. Stopping UDB

One command that is needed in order to exit UDB from any point.

quit Exits UDB. q and Ctrl-C are aliases.

C.5. Getting Help

An important command to inquire and get help about other UDB commands.

help Lists all classes of commands. h and ? are aliases.

help class Provides a specific description for a class of commands.

help command Provides a detailed description about a specific command.

C.6. Executing a Program

How to start the execution of a loaded program.

run arglist Starts the currently loaded program with arglist. r arglist is an

alias.

run Starts the currently loaded program without arguments. r is an alias.

load program Loads the program executable into UDB; if a program is already

loaded, this command replaces it with a new program.

C.7. Breakpoints

Important commands on how to make the program stop at certain points; source code locations such

as a line number or an entry to a procedure or method.

break line If execution is stopped, it assumes line within the current file,

otherwise, line is assumed to be within the file that contains

procedure main(). b line is an alias.

break [file] line Sets a breakpoint at line number [in file]. b [file] line is an alias, i.e.

b test.icn 15.

b procedure Sets a breakpoint at the entry of procedure.

info break [id] Shows a complete list of all breakpoints and their status. If id is

provided it shows only the breakpoint with the number id. info

breakpoints [id] is an alias.

info break [file] Shows a complete list of all breakpoints and their status; if file is

provided, it shows only breakpoints from that [file]. info

breakpoints [file] is an alias.

196

clear Removes all breakpoints.

clear break Removes all breakpoints.

clear break [file] line Removes the breakpoint at line [in file].

clear break procedure Removes the breakpoint at the entry to procedure.

delete break [n] Deletes all breakpoints, if [n] is provided, it only deletes the

breakpoint with the id number [n]; deleted breakpoints are still seen

by the command info break, but marked as deleted.

enable break [n] Enables all disabled breakpoints, if [n] is provided, it only enables

the breakpoint with the id number [n].

disable break [n] Disables all breakpoints, if [n] is provided, it only disables the

breakpoint with the id number [n].

C.8. Watchpoints

Techniques to observe certain variable activities such as a variable being assigned, read, changed

value, or changed type. Watchpoints may cause the program to stop at specific action(s), or they may

work silently collecting information about specific action(s). Most watchpoints supports relational

operations such as =, ~=, <, >, <=, >=, which they can be applied on the value or type of the observed

variable or keyword.

awatch [-silent] [count] variable [[=|>|<|<=|>=|~=] value]

Sets an assignment watchpoint on variable whenever assigned, with

an optional condition on the assigned value. watch is an alias to this

awatch command.

If –silent is provided, the watchpoint does not notify the user at

every incident.

If count is provided and count > 0, it observes the first count

number of incidents.

If count is provided and count < 0, the user is able to trace back the

last count number of incident’s locations and values.

watch –silent variable Sets a silent watchpoint on variable whenever assigned.

watch count variable Sets a normal watchpoint on variable on the first count number of

assignments.

watch -count variable Sets a normal watchpoint on variable and keeps track of the last

count number of assignments.

watch variable = value Sets a normal watchpoint on variable whenever assigned with

value.

watch variable > value Sets a silent watchpoint on variable whenever assigned and the

assigned value > value.

197

watch –s n variable Sets a silent watchpoint on variable on the first n number of

assignments.

rwatch [–silent] [count] variable [[=|>|<|<=|>=|~=] value]

Sets a watchpoint on variable whenever read. Other arguments are

similar to the watch command.

vwatch [–silent] [count] variable [[=|>|<|<=|>=|~=] value]

Sets a watchpoint on variable whenever assigned and the new value

is different from the old one (changed value). Other arguments are

similar to the watch command.

twatch [–silent] [count] variable [[=|~=] type]

Sets a watchpoint on variable whenever assigned and the type of

new value is different from the type of the old one (changed type).

Other arguments are similar to the watch command.

swatch [–silent][count]

Sets a watchpoint on string scanning environment; in particular the

explicit and implicit change of &pos and &subject keywords.

info watchpoints Shows a complete list of all watchpoints; info watch and watch are

aliases.

info awatch Shows a list of all assignment watchpoints.

info rwatch Shows a list of all read watchpoints.

info vwatch Shows a list of all value change watchpoints.

info twatch Shows a list of all type change watchpoints.

clear watch Clears all watchpoints; watchpoints with different types are cleared.

If watch is replaced with any of awatch, rwatch, twatch, vwatch,

or swatch, it clears only the specified type of watchpoints.

delete watch [n] Deletes all watchpoints, if [n] is provided, it only deletes the

watchpoint with the id number [n]. If watch is replaced with any of

awatch, rwatch, twatch, vwatch, or swatch, it deletes only the

specified type of watchpoints.

enable watch [n] Enables all disabled watchpoints; if [n] is provided, it only enables

the watchpoint with the id number [n]. If watch is replaced with any

of awatch, rwatch, twatch, vwatch, or swatch, it enables only the

specified type of watchpoints.

disable watch [n] Disables all enabled watchpoints; if [n] is provided, it only disables

the watchpoint with the id number [n]. If watch is replaced with any

of awatch, rwatch, twatch, vwatch, or swatch, it disables only the

specified type of watchpoints.

198

C.9. Tracepoints

Techniques are used to observe execution behavior such as the type of the returned value from a user-

defined procedure, built-in function, and language operator. It is intended to provide more

lightweight flexibility to simplify and speed up the process of manual investigations. Behaviors can

be general such as start or end, or detailed such as call and resume as specific details for the start

behavior, and return, suspend, fail, and remove as specific details for end behavior. In particular,

the return behavior is applicable for extra condition on the returned value. If the flag –silent is

provided, the tracepoint will not stop the execution but the user will be able to check the traced info

from any point during or after the execution.

trace [–silent] [count] procedure [behavior [op value]]

Sets a tracepoint on procedure whenever the provided behavior is

satisfied.

If behavior is not provided, all behaviors are traced.

If –silent is provided, the tracepoint does not notify the user at every

incident.

If count is provided and count > 0, it traces the first count number

of incidents.

If count is provided and count < 0, the user is able to trace back the

last count number of incidents.

trace bar Sets a tracepoint on all valid behaviors of the procedure bar.

trace bar call Sets a tracepoint on procedure bar whenever it is called.

Action is very similar to the break bar command.

trace bar return Sets a tracepoint on procedure bar whenever it is returned.

trace bar return <= 1 Sets a tracepoint on procedure bar whenever it returns a value <=

1.

trace 10 bar resume Sets a tracepoint on procedure bar for the first 10 times it resumes.

trace bar fail Sets a tracepoint of procedure bar whenever it is failed.

trace –silent bar Sets a silent tracepoint on all valid behaviors of the procedure bar;

this tracepoint will not stop the execution at every traced behavior

incident.

trace [–silent] [count] function [behavior [op value]]

Sets a tracepoint on built-in function whenever the provide behavior

is satisfied. If behavior is not provided, all behaviors are traced.

Other arguments are similar to the procedure trace command.

trace abs call Sets a tracepoint on the function abs() whenever it is called.

trace write fail Sets a tracepoint on the function write() whenever it is failed.

trace cos return < 0 Sets a tracepoint on the function cos() whenever it is returns a

value < 0.

199

trace [–silent] [count] operator [behavior [op value]]

Sets a tracepoint on a built-in operator whenever the provided

behavior is satisfied. If behavior is not provided, all behaviors are

traced. operator is one of the following: (+, -, *, /, \, =, ~=, ==,

~==, ===, ~===, <, <=, <<=, >, >=, >>=, ++, --, **, !, ?, []).

trace [] fail Sets a tracepoint on [] (subscript operation) whenever it is failed.

trace ! suspend Sets a tracepoint on ! (Bang operator) whenever it is suspended.

trace = fail Sets a trace point on = whenever it is failed.

trace ~== Sets a trace point on ~== whenever any of its behaviors is satisfied

(occurred).

trace ~== return Sets a tracepoint on ~== whenever it returns (the operation

succeeded because both sides are lexically not equal).

trace ~== return = “ab” Sets a tracepoint on ~== whenever it returns (the operation

succeeded because both sides are lexically equal to ―ab‖).

info tracepoints Prints a complete list of all tracepoints; info trace and trace are

aliases.

info trace [n] Prints detailed information about the tracepoint with id number [n].

info trace [name] Prints detailed information about the tracepoint set on [name].

info trace enabled Prints a complete list of all enabled tracepoints.

info trace disabled Prints a complete list of all disabled tracepoints.

info trace deleted Prints a complete list of all deleted tracepoints.

clear trace [n] Clears all tracepoints, if [n] is provided, it only clears the tracepoint

with id number [n].

clear trace [name] Clears all tracepoints, if [name] is provided, it only clears the

tracepoint set on [name].

delete trace [n] Deletes all tracepoints, if [n] is provided, it only deletes the

tracepoint with id number [n].

delete trace [name] Deletes all tracepoints, if [name] is provided, it only deletes the

tracepoint set on [name].

enable trace [n] Enables all tracepoints; if [n] is provided, it only enables the

tracepoint that has the id [n].

enable trace [name] Enables all tracepoints; if [name] is provided, it only enables the

tracepoint set on [name].

disable trace [n] Disables all tracepoints; if [n] is provided, it only disables the

tracepoint that has the id number [n].

disable trace [name] Disables all tracepoints; if [name] is provided, it only disables the

tracepoint set on [name].

200

C.10. Program Stack

Techniques to investigate the interpreter stack (execution stack). When the execution stops at any

point, the currently selected frame points at the frame of the currently executing procedure, a user

may change the currently selected frame or traceback all stack frames.

backtrace [n] Prints a trace of all frames in the current stack. If [n] is provided, it

prints the n
th
 innermost frames when n>0, and it prints the n

th

outermost frames when n < 0. where [n] and bt [n] are aliases; i.e.

where, where 10, where -10, bt , bt 10.

frame [n] Selects and displays information of frame number [n]; if [n] is not

provided, it displays information about the currently selected frame. f

[n] is an alias.

up [n] Moves the selected frame [n] frames up; if [n] is not provided, it

moves the currently selected frame one frame up.

down [n] Moves the selected frame [n] frames down; if [n] is not provided, it

moves the currently selected frame one frame down.

C.11. Execution Control

Includes commands to step and resume the execution of the program.

continue Resumes program’s execution. cont and c are aliases.

step [count] Executes the program until a new line is reached; if [count] is

specified, it repeats the command count more times. s and s

[count] are aliases.

next [count] Executes the next line and steps over any procedure call; if [count]

is specified, it repeats the command count more times. n and n

[count] are aliases.

return Completes the execution of the current procedure and returns back to

the place of calling to step on the next statement after the call. ret

and finish are aliases.

C.12. Display and Change Data

Ways to examine and change data in the current execution state; change can be done by assigning to

variables or keywords.

print variable Prints the value of variable; if variable is a reference to a structure,

then it displays its ximage, otherwise it displays its simple value. p

is an alias.

201

print &keyword Prints the value of &keyword; For example:

print &pos

print expr Prints the evaluation of the expr. For example:

p L[5] : prints the contents of L[5].

p S[i : 10] : prints the characters between i and 10 of string S.

print r.a : prints the contents of failed a of record r.

print variable = expr Evaluates expr and assigns its value to variable. For example:

print x = 10

print L[1] = 1000

print T[“one”] = “First”

print S[4] = “K”

print S[5:10] = “insert a string”

print r.a = 4.5

print x = y; where y is another variable.

print &keyword = value Assigns a value to a &keyword; For example:

print &pos = 1

print &subject = “ABCcba”

print *variable Prints the size of variable whenever it is applicable; i.e. print *L, or

print *S.

print !variable Generates and prints the values of variable; i.e. print !L, or print !S.

print &features Prints the first generated value out of the keyword &features.

print ! &features Prints all generated values out of the keyword &features.

info local Shows all local variable names in the currently selected frame. print

–local is an alias.

info static Shows all static variable names in the currently selected frame. print

–static is an alias.

info parameter Shows all parameter variable names in the currently selected frame.

print –param is an alias.

C.13. Source Files and Code Info

Commands to look up source files and code. UDB tries to open user and library files, which are used

to build the executable. A user can navigate source files and source code based on the executable.

list Displays ten lines of source code; if execution is paused, the printed

lines are from the current line and file, otherwise, the printed lines

are from the file that has the procedure main(). l is an alias.

list + Displays the next ten lines of source code. l + is an alias.

list - Displays the previous ten lines of source code. l - is an alias.

202

list procedure Displays ten source lines surrounding procedure.

list [file] line Displays ten source lines surrounding line [in file]; if line is

positive, counts will starts from the top of the file, otherwise, count

starts from the bottom of the file. i.e. l -25: shows ten lines

surrounding the line number 25 counting backward from the end of

file.

info source Prints a detailed summary about the loaded executable. source is an

alias.

info file Prints a list of all source files in use including library files. source

file is an alias.

info found Prints a list of all loaded source files including library files. source

found is an alias.

info missing Prints a list of all not loaded used source files. source missing is an

alias.

info user Prints a list of all user-defined source file names in use. source user

is an alias.

info lib Prints a list of all library file names in use. source lib is an alias.

info package Prints a list of all package names in use. source package is an alias.

info class Prints a list of all class names in use. source class is an alias.

info record Prints a list of all record names in use. source record is an alias.

info procedure Prints a list of all procedure names in use. source procedure is an

 alias.

info function Prints a list of all built-in function names in use. source function is

an alias

info global Prints a list of all global variable names in use. source global is an

alias.

info icode Prints information about the current icode binary such as its version.

source icode is an alias.

C.14. Memory Usage

Important commands to look up the memory usage

print ®ions Prints a summary of the total available memory an how mach in each

region.

print &storage Prints a summary of the total currently used memory and how much

is currently allocated in each region.

print &allocations Prints a summary of the total allocations up to that point of

execution. Memory that cleaned up by the GC is still count.

print &collections Prints a summary of the total number of Garbage Collections

occurred up to that point of execution.

203

C.15. Shell Commands

Some of the most needed shell commands during a UDB session.

ls Equivalent to the Unix ls shell command.

pwd Equivalent to the Unix pwd shell command.

cd Equivalent to the Unix cd shell command.

C.16. Extension Agents

How to load and manage external standalone debugging agents on the fly during the debugging

session.

enable internal agent Enables the internal agent named agent on the fly during the

debugging session

disable internal agent Disables the internal agent named agent on the fly during the

debugging session

info internal Prints information about all internal agents available in the session

and the system

info internal agent Prints information about the internal agents named agent

load –agent agent Loads the standalone external agent named agent on the fly during

the debugging session

enable external Enables all external agent that are loaded and disabled in the current

session

enable external agent Enables the external agent named agent that is loaded and disabled in

the current session

disable external Disables all external agent that are loaded in the current

session

disable external agent Disables the external agent named agent that is loaded and enabled in

the current session

info external Prints information about all external debugging agents available in

the session

info external agent Prints information about the external agent named agent

C.17. Temporal Assertions

Temporal Assertions-related commands.

assert file:line always() { expr } expr must hold at all times

assert file:line sometime() { expr } exper must hold at least once during each interval

204

assert file:line alwaysp() { expr } expr must hold at all times

assert file:line sometimep() { expr } exper must hold at least once during each interval

assert file:line since() { p1 ==> p2 } since p1 holds, p2 must hold at all times up to the end of

the interval

assert file:line previous() { p } p must hold at the previous state right before the assertions'

location

assert file:line alwaysf() { expr } expr must hold at all times

assert file:line sometimef() { expr } exper must hold at least once n during each interval

assert file:line until() { p1 ==> p2 } p1 holds until p2 holds

assert file:line next() { p } p must hold at the next state right after the assertions'

location

info assert Prints information about all assertions available in the

session

info assert id Prints information about the assertion number id

info assert id hit Prints information about the assertion number id and its

interval number hit.

205

Bibliography

[1]. Boothe, B., ―Efficient Algorithms for Bidirectional Debugging.‖ In Proceedings of the ACM

SIGPLAN 2000 Conference on Programming Language Design and Implementation

(Vancouver, British Columbia, Canada, June 18 - 21, 2000). PLDI '00. ACM, New York, NY,

2000, pp. 299-310.

[2]. Winterbottom, P., ―ACID: A Debugger Built From A Language.‖ In Proceedings of the

Winter 1994 USENIX Conf., San Francisco, CA. 1994. pp. 211-222.

[3]. Jeffery, C. L. ―Goal-Directed Object-Oriented Programming in Unicon.‖ In Proceedings of the

2001 ACM Symposium on Applied Computing (Las Vegas, Nevada, United States). SAC '01.

ACM, New York, NY, 2001. pp. 306-308.

[4]. Jeffery C. L., Mohammand, S., Pereda, R., and Parlett, R., ―Programming with Unicon,‖

2004. Published under the terms of the GNU Free Documentation License, Version 1.2.

http://www.unicon.org.

[5]. Stallman, R. M., Pesch, R., Shebs, S., et al, ―Debugging with GDB: the GNU Source Level

Debugger.‖ Ninth edition, for Version 7.0.5,

http://www.gnu.org/software/gdb/documentation, 2009.

[6]. Griswold, R.E., and Griswold, M.T., ―The ICON Programming Language,‖ Third Edition.

Published by Peer-to-Peer Communications, San Jose, CA, 1996.

[7]. Griswold, R.E., and Griswold, M.T., ―The Implementation of the Icon Programming

Language,‖ Princeton University Press, Princeton, NJ, 1986.

[8]. Zeller, A., and Lutkehaus, D., ―DDD-A Free Graphical Front-End For UNIX Debuggers,‖

SIGPLAN Not., vol. 31, no. 1, 1996, pp. 22-27.

[9]. Cheung, W.H., Black, J.P., and Manning, E., ―A Framework for Distributed Debugging,‖

IEEE Softw., vol. 7, no. 1, 1990, pp. 106-115.

[10]. Araki, K., Furukawa, Z., and Cheng, J., ―A General Framework for Debugging,‖ IEEE Softw.,

vol. 8, no. 3, 1991, pp. 14-20.

[11]. Law, R., ―An Overview of Debugging Tools,‖ SIGSOFT Softw. Eng. Notes, vol. 22, no. 2,

1997, pp. 43-47.

206

[12]. Auguston, M., Jeffery, C., and Underwood, S., ―A Framework for Automatic Debugging,‖ In

Proceedings of the 17th IEEE International Conference on Automated Software Engineering,

September 23-27, 2002, Edinburgh, UK, IEEE Computer Society Press, pp. 217--222.

[13]. Kernighan, B.W., and Plauger, P.J., ―The Elements of Programming Style,‖ Second Edition

McGraw-Hill, Inc. New York, NY, USA, 1982.

[14]. Anonymous, Another Day, ―Another Bug.‖ ACM Queue vol. 1, no. 6. New York, NY, USA,

Sep. 2003, pp. 58-61. DOI= http://doi.acm.org/10.1145/945131.945156.

[15]. Liblit, B., Aiken, A., Zheng, A. X., and Jordan, M. I., ―Bug Isolation via Remote Program

Sampling.‖ In Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation (San Diego, California, USA, June 09 - 11, 2003).

PLDI '03. ACM, New York, NY, 2003, pp. 141-154.

DOI= http://doi.acm.org/10.1145/781131.781148.

[16]. Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I., ―Scalable Statistical Bug

Isolation.‖ In Proceedings of the 2005 ACM SIGPLAN Conference on Programming

Language Design and Implementation (Chicago, IL, USA, June 12 - 15, 2005). PLDI '05.

ACM, New York, NY, 2005, pp.15-26. DOI= http://doi.acm.org/10.1145/1065010.1065014.

[17]. Mateis, C., Stumptner, M., and Wotawa, F., ―Debugging of Java Programs Using a Model-

Based Approach,‖ In Proceedings of the Tenth International Workshop on Principles of

Diagnosis (DX-99), Loch Awe, Scotland, 1999.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.7879.

[18]. Seward, N. Nethercote, J. Weidendorfer and the Valgrind Development Team, ―Valgrind 3.3 -

Advanced Debugging and Profiling for GNU/Linux applications,‖ Network Theory Ltd, 2008.

http://www.network-theory.co.uk/valgrind/manual.

[19]. Nethercote, N., and Seward, J., ―Valgrind: A Framework for Heavyweight Dynamic Binary

Instrumentation,‖ SIGPLAN Not. vol. 42, no. 6, 2007, pp. 89-100.

[20]. Zeller, A., ―Isolating cause-effect chains from computer programs.‖ In Proceedings of the

10th ACM SIGSOFT Symposium on Foundations of Software Engineering (Charleston, South

Carolina, USA, November 18 - 22, 2002). SIGSOFT '02/FSE-10. ACM, New York, NY,

2002, pp.1-10. DOI= http://doi.acm.org/10.1145/587051.587053.

207

[21]. Zeller, A. and Hildebrandt, R., ―Simplifying and Isolating Failure-Inducing Input.‖ IEEE

Trans. Softw. Eng. vol. 28, no. 2. Feb. 2002, pp. 183-200.

DOI= http://dx.doi.org/10.1109/32.988498.

[22]. Zeller, A., ―Why Programs Fail: A Guide to Systematic Debugging,‖ Elsevier Inc, New York

USA, 2006.

[23]. Sun Microsystems, Inc. ―Java platform debug architecture (JPDA),‖ 2009. Available at:

http://java.sun.com/products/jpda/.

[24]. Ko, A. J. and Myers, B. A., ―Designing the Whyline: A Debugging Interface for Asking

Questions about Program Behavior.‖ In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04. ACM, New

York, NY, 2004, pp.151-158. DOI= http://doi.acm.org/10.1145/985692.985712.

[25]. Ko, A. J. and Myers, B. A., ―Source-Level Debugging With the Whyline.‖ In Proceedings of

the 2008 International Workshop on Cooperative and Human Aspects of Software

Engineering (Leipzig, Germany, May 13 - 13, 2008). CHASE '08. ACM, New York, NY,

2008, pp. 69-72. DOI= http://doi.acm.org/10.1145/1370114.1370132.

[26]. Ko, A., ―Debugging By Asking Questions About Program Output.‖ In Proceedings of the 28th

International Conference on Software Engineering (Shanghai, China, May 20 - 28, 2006).

ICSE '06. ACM, New York, NY, 2006, pp. 989-992.

DOI= http://doi.acm.org/10.1145/1134285.1134471.

[27]. Ko, A. J. and Myers, B. A., ―Debugging Reinvented: Asking and Answering Why and Why

Not Questions about Program Behavior.‖ In Proceedings of the 30th International Conference

on Software Engineering (Leipzig, Germany, May 10 - 18, 2008). ICSE '08. ACM, New York,

NY, 2008, pp. 301-310. DOI= http://doi.acm.org/10.1145/1368088.1368130.

[28]. Ko, A. J. and Myers, B. A., ―Finding Causes of Program Output with the Java Whyline.‖ In

Proceedings of the 27th International Conference on Human Factors in Computing Systems

(Boston, MA, USA, April 04 - 09, 2009). CHI '09. ACM, New York, NY, 2009, pp. 1569-

1578. DOI= http://doi.acm.org/10.1145/1518701.1518942.

[29]. Nikolik, B., ―Convergence Debugging.‖ In Proceedings of the Sixth International Symposium

on Automated Analysis-Driven Debugging (Monterey, California, USA, September 19 - 21,

2005). AADEBUG'05. ACM, New York, NY, 2005, pp. 89-98.

DOI= http://doi.acm.org/10.1145/1085130.1085142.

208

[30]. Xie, G., Xu, Y., Li, Y., and Li, Q., ―Codebugger: A Software Tool for Cooperative

Debugging.‖ SIGPLAN Not. 35, 2 (Feb. 2000), 2000, pp. 54-60.

DOI= http://doi.acm.org/10.1145/345105.345128.

[31]. Frost, R., ―Jazz and the Eclipse Way of Collaboration.‖ IEEE Softw. vol. 24, no. 6, Nov. 2007,

pp. 114-117. DOI= http://dx.doi.org/10.1109/MS.2007.170.

[32]. Liblit, B., ―Cooperative Bug Isolation: Winning Thesis of the 2005 ACM Doctoral

Dissertation Competition” (Lecture Notes in Computer Science). Springer-Verlag New York,

Inc. 2007.

[33]. Dionne, C., Feeley, M., and Desbiens, J., ―A Taxonomy of Distributed Debuggers Based on

Execution Replay.‖ In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques. August 1996. pp. 203-214.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.4538.

[34]. Auguston, M., ―Tools for Program Dynamic Analysis, Testing, and Debugging Based on

Event Grammars.‖ In Proceedings of the 12th International Conference on Software

Engineering and Knowledge Engineering (SEKE 2000), Chicago, USA, July 6-8, 2000,

pp.159-166.

[35]. Bates, P., ―Debugging Heterogeneous Distributed Systems Using Event-Based Models of

Behavior.‖ SIGPLAN Not. vol. 24, no. 1, Jan. 1989, pp. 11-22.

DOI= http://doi.acm.org/10.1145/69215.69217.

[36]. Bates, P. C., ―Debugging Heterogeneous Distributed Systems Using Event-Based Models of

Behavior.‖ ACM Trans. Comput. Syst. vol. 13, no. 1, Feb. 1995, pp. 1-31.

DOI= http://doi.acm.org/10.1145/200912.200913.

[37]. Bourdoncle, F., ―Abstract Debugging of Higher-Order Imperative Languages.‖ In Proceedings

of the ACM SIGPLAN 1993 Conference on Programming Language Design and

Implementation (Albuquerque, New Mexico, United States, June 21 - 25, 1993). R.

Cartwright, Ed. PLDI '93. ACM, New York, NY, 1993. pp. 46-55.

DOI= http://doi.acm.org/10.1145/155090.155095.

[38]. Bourdoncle, F., ―Assertion-Based Debugging of Imperative Programs by Abstract

Interpretation.‖ In Proceedings of the 4th European Software Engineering Conference (ESEC)

(September 13 - 17, 1993). I. Sommerville and M. Paul, Eds. Lecture Notes In Computer

Science, vol. 717. Springer-Verlag, London, 1993, pp. 501-516.

209

[39]. Ducassé, M., ―A Pragmatic Survey of Automated Debugging.‖ In Proceedings of the First

International Workshop on Automated and Algorithmic Debugging (May 03 - 05, 1993). P.

Fritzon, Ed. Lecture Notes In Computer Science, vol. 749. Springer-Verlag, London, 1993.

pp. 1-15.

[40]. Czyz, J. K. and Jayaraman, B., ―Declarative and Visual Debugging in Eclipse.‖ In

Proceedings of the 2007 OOPSLA Workshop on Eclipse Technology Exchange (Montreal,

Quebec, Canada, October 21 - 21, 2007). Eclipse '07. ACM, New York, NY, 2007, pp. 31-35.

DOI= http://doi.acm.org/10.1145/1328279.1328286.

[41]. Misherghi, G. and Su, Z., ―HDD: Hierarchical Delta Debugging.‖ In Proceedings of the 28th

International Conference on Software Engineering (Shanghai, China, May 20 - 28, 2006).

ICSE '06. ACM, New York, NY, 2006, pp. 142-151.

DOI= http://doi.acm.org/10.1145/1134285.1134307.

[42]. Olsson, R. A., Crawford, R. H., and Ho, W. W., ―A Dataflow Approach to Event-Based

Debugging.‖ Softw. Pract. Exper. vol. 21, no. 2, Feb. 1991, pp. 209-229.

DOI= http://dx.doi.org/10.1002/spe.4380210207.

[43]. Olsson, R. A., Crawford, R. H., Ho, W. W., and Wee, C. E., ―Sequential Debugging at a High

Level of Abstraction.‖ IEEE Softw. vol. 8, no. 3, May, 1991, pp. 27-36.

DOI= http://dx.doi.org/10.1109/52.88941.

[44]. Abraham, R. and Erwig, M. ―Goal-Directed Debugging of Spreadsheets.‖ In Proceedings of

the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (September

20 - 24, 2005). VLHCC. IEEE Computer Society, Washington, DC, 2005, pp. 37-44.

DOI= http://dx.doi.org/10.1109/VLHCC.2005.42.

[45]. Seidner, R. and Tindall, N., ―Interactive Debug Requirements.‖ In Proceedings of the

Symposium on High-Level Debugging (Pacific Grove, California, March 20 - 23, 1983).

SIGSOFT '83. ACM, New York, NY, 1983. pp. 9-22.

DOI= http://doi.acm.org/10.1145/1006147.1006151.

[46]. Mayer, W. and Stumptner, M., ―Model-Based Debugging—State of the Art and Future

Challenges.‖ Electron. Notes Theor. Comput. Sci. vol. 174, no. 4, May. 2007, pp. 61-82.

DOI= http://dx.doi.org/10.1016/j.entcs.2006.12.030.

[47]. Lewis, B., ―Debugging Backwards in Time‖. In Proceedings of the Fifth International

Workshop on Automated Debugging (AADEBUG 2003), Ghent, Belgium, Sep. 8-10, 2003.

210

[48]. Lewis, B. and Ducasse, M., ―Using Events to Debug Java Programs Backwards in Time.‖ In

Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (Anaheim, CA, USA, October 26 - 30,

2003). OOPSLA '03. ACM, New York, NY, 2003, pp. 96-97.

DOI= http://doi.acm.org/10.1145/949344.949367.

[49]. Pothier, G. and Tanter, É., ―Extending Omniscient Debugging to Support Aspect-Oriented

Programming.‖ In Proceedings of the 2008 ACM Symposium on Applied Computing

(Fortaleza, Ceara, Brazil, March 16 - 20, 2008). SAC '08. ACM, New York, NY, 2008,

pp. 266-270. DOI= http://doi.acm.org/10.1145/1363686.1363753.

[50]. Pothier, G., Tanter, É., and Piquer, J., ―Scalable Omniscient Debugging.‖ In Proceedings of

the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems and

Applications (Montreal, Quebec, Canada, October 21 - 25, 2007). OOPSLA '07. ACM, New

York, NY, 2007, pp. 535-552. DOI= http://doi.acm.org/10.1145/1297027.1297067.

[51]. Wu, X., Chen, Q., and Sun, X., ―Design and Development of a Scalable Distributed Debugger

for Cluster Computing.‖ Cluster Computing vol. 5, no. 4, Oct. 2002, pp. 365-375.

DOI= http://dx.doi.org/10.1023/A:1019708204283.

[52]. Graham, S. L., Kessler, P. B., and McKusick, M. K., ―gprof: A Call Graph Execution

Profiler.‖ SIGPLAN Not. vol. 39, no. 4 (Apr. 2004), 2004, pp. 49-57.

DOI= http://doi.acm.org/10.1145/989393.989401.

[53]. Narayanasamy, S., Pokam, G., and Calder, B., ―BugNet: Continuously Recording Program

Execution for Deterministic Replay Debugging.‖ SIGARCH Comp. Archit. News vol. 33,

no. 2, May. 2005, pp. 284-295. DOI= http://doi.acm.org/10.1145/1080695.1069994.

[54]. Searle, A., Gough J., Abramson, D., ―Automating Relative Debugging,‖ In the proceeding of

the 18th IEEE International Conference on Automated Software Engineering (ASE'03), Oct.

6-10, 2003, pp. 356-359.

[55]. Sosic, R., and Abramson, D., ―Guard: A Relative Debugger,‖ Software: Practice and

Experience, vol. 27, no. 2, (Published Online: Jan 8, 1999 by John Wiley & Sons, Ltd.)

Feb.1997, pp. 185-206.

[56]. Feldman, S. I. and Brown, C. B., ―IGOR: A System for Program Debugging via Reversible

Execution.‖ In Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Parallel

and Distributed Debugging (Madison, Wisconsin, United States, May 05 - 06, 1988). R. L.

211

Wexelbalt, Ed. PADD '88. ACM, New York, NY, 1988, pp. 112-123.

DOI= http://doi.acm.org/10.1145/68210.69226.

[57]. Albertsson, L., ―Simulation-Based Debugging of Soft Real-Time Applications.‖ In

Proceedings of the Seventh Real-Time Technology and Applications Symposium (RTAS '01)

(May 30 - June 01, 2001). RTAS. IEEE Computer Society, Washington, DC, 2001,

pp. 107-108.

[58]. Weaver, V., McKee, S., ―Using Dynamic Binary Instrumentation to Generate Multi-Platform

Simpoints: Methodology and Accuracy.‖ In the 3rd EC International Conference on High

Performance Embedded Architectures and Compilers (HiPEAC'08), Göteborg, Sweden, Jan.

2008, pp. 305-319.

[59]. Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I., ―Scalable Statistical Bug

Isolation.‖ SIGPLAN Not. vol. 40, no. 6, Jun. 2005, pp. 15-26.

DOI= http://doi.acm.org/10.1145/1064978.1065014.

[60]. Arumuga Nainar, P., Chen, T., Rosin, J., and Liblit, B., ―Statistical Debugging Using

Compound Boolean Predicates.‖ In Proceedings of the 2007 International Symposium on

Software Testing and Analysis (London, United Kingdom, July 09 - 12, 2007). ISSTA '07.

ACM, New York, NY, 2007, pp. 5-15. DOI= http://doi.acm.org/10.1145/1273463.1273467.

[61]. Mehner, K., ―Trace Based Debugging and Visualization of Concurrent Java Programs with

UML‖. Paderborn University, Dissertation, 2005.

http://www.scientificcommons.org/30877459.

[62]. Reiss, S. P., ―Trace-Based Debugging.‖ In Proceedings of the First International Workshop

on Automated and Algorithmic Debugging (May 03 - 05, 1993). P. Fritzon, Ed. Lecture Notes

in Computer Science, vol. 749. Springer-Verlag, London, 1993, pp. 305-314.

[63]. Crossno, P., Rogers, D. H., and Garasi, C. J., ―Case Study: Visual Debugging of Finite

Element Codes.‖ In Proceedings of the Conference on Visualization '02 (Boston,

Massachusetts, October 27 - November 01, 2002). IEEE Computer Society, Washington, DC,

2002, pp. 517-520.

[64]. Clarke, L. A. and Rosenblum, D. S., ―A Historical Perspective on Runtime Assertion

Checking in Software Development.‖ SIGSOFT Softw. Eng. Notes vol. 31, no. 3, May. 2006,

pp. 25-37. DOI= http://doi.acm.org/10.1145/1127878.1127900.

212

[65]. Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J. R., Leavens, G. T., Leino, K. R.,

and Poll, E., ―An Overview of JML Tools and Applications.‖ Int. J. Softw. Tools Technol.

Transf. vol. 7, no. 3 Jun. 2005, pp. 212-232.

DOI= http://dx.doi.org/10.1007/s10009-004-0167-4.

[66]. Drusinsky, D., ―The Temporal Rover and the ATG Rover.‖ In Proceedings of the 7th

International SPIN Workshop on SPIN Model Checking and Software Verification (August 30

- September 01, 2000). K. Havelund, J. Penix, and W. Visser, Eds. Lecture Notes in Computer

Science, vol. 1885. Springer-Verlag, London, 2000, pp. 323-330.

[67]. Allen, D., ―The Perl Debugger.‖ Linux J. 2005, 131, Mar. 2005, 8.

[68]. Beazley, D. M, ―Python Essential Reference,‖ (3rd Edition) (Developer's Library). Sams,

2006.

[69]. LaLonde, W. R. and Pugh, J. R,: Inside Smalltalk: vol. 1.‖ Prentice-Hall, Inc. 1990.

[70]. Hanson, D. R. ―A Machine-Independent Debugger—Revisited.‖ Softw. Pract. Exper. vol. 29,

no. 10 Aug. 1999, pp. 849-862.

[71]. Ramsey, N. and Hanson, D. R., ―A Retargetable Debugger.‖ In Proceedings of the ACM

SIGPLAN 1992 Conference on Programming Language Design and Implementation (San

Francisco, California, United States, June 15 - 19, 1992). R. L. Wexelblat, Ed. PLDI '92.

ACM, New York, NY, 1992, pp. 22-31. DOI= http://doi.acm.org/10.1145/143095.143112.

[72]. Hanson, D. R. and Korn, J. L., ―A Simple and Extensible Graphical Debugger.‖ In

Proceedings of the Annual Conference on USENIX Annual Technical Conference (Anaheim,

California, January 06 - 10, 1997). USENIX Association, Berkeley, CA, 1997, pp. 173-184.

[73]. Korn, J. L., ―Abstraction and Visualization in Graphical Debuggers.‖ Doctoral Thesis. UMI

Order Number: AAI9944651., Princeton University, Princeton, NJ, 1999.

[74]. A Graphical Interface to GNU’s Debugger (XXGDB), 2003.

http://linux.maruhn.com/sec/xxgdb.html

[75]. Rossi, B., ―The Curses (Terminal-Based) Interface to the GNU Debugger--GDB,‖ CGDB

Version 0.6.4, 2 April 2007. http://cgdb.sourceforge.net/

[76]. Alekseev, S., ―Java Debugging Laboratory for Automatic Generation and Analysis of Trace

Data.‖ In Proceedings of the 25th Conference on IASTED International Multi-Conference:

Software Engineering (Innsbruck, Austria, February 13 - 15, 2007). W. Hasselbring, Ed.

ACTA Press, Anaheim, CA, 2007, pp. 177-182.

213

[77]. Java Debugging Laboratory, JDLabStudio, version 1.0.0. ‖ http://jdlabstudio.sourceforge.net/.

[78]. Dotan, D. and Kirshin, A., ―Debugging and testing behavioral UML models.‖ In Companion

to the 22nd ACM SIGPLAN Conference on Object-Oriented Programming Systems and

Applications Companion (Montreal, Quebec, Canada, October 21 - 25, 2007). OOPSLA '07.

ACM, New York, NY, 2007, pp. 838-839.

DOI= http://doi.acm.org/10.1145/1297846.1297915.

[79]. Sterling, C. D. and Olsson, R. A., ―Automated Bug Isolation via Program Chipping.‖ In

Proceedings of the Sixth International Symposium on Automated Analysis-Driven Debugging

(Monterey, California, USA, September 19 - 21, 2005). AADEBUG'05. ACM, New York,

NY, 2005, pp. 23-32. DOI= http://doi.acm.org/10.1145/1085130.1085134.

[80]. Sterling, C. D. and Olsson, R. A., ―Automated Bug Isolation via Program Chipping.‖ Softw.

Pract. Exper. vol. 37, no. 10, Aug. 2007, pp. 1061-1086.

DOI= http://dx.doi.org/10.1002/spe.v37:10.

[81]. Wall, K., and Hagen, W. V., ―The Definitive Guide to GCC,‖ Second Edition (Definitive

Guide). Springer-Verlag, New York, NY. 2006.

[82]. Hovemeyer, D. and Pugh, W., ―Finding Bugs Is Easy.‖ In Companion to the 19th Annual

ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and

Applications (Vancouver, BC, CANADA, Oct. 24 - 28, 2004). OOPSLA '04. ACM, New

York, NY, 2004, pp. 132-136. DOI= http://doi.acm.org/10.1145/1028664.1028717.

[83]. Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., and Zhou, Y., ―Evaluating Static

Analysis Defect Warnings on Production Software.‖ In Proceedings of the 7th ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering

(San Diego, California, USA, June 13 - 14, 2007). PASTE '07. ACM, New York, NY, 2007,

pp. 1-8. DOI= http://doi.acm.org/10.1145/1251535.1251536 .

[84]. InfoEther, ―PMD,‖ Available at: http://pmd.sourceforge.net/.

[85]. Evans, D., ―Static Detection of Dynamic Memory Errors.‖ In Proceedings of the ACM

SIGPLAN 1996 Conference on Programming Language Design and Implementation

(Philadelphia, Pennsylvania, United States, May 21 - 24, 1996). PLDI '96. ACM, New York,

NY, 1996, pp. 44-53. DOI= http://doi.acm.org/10.1145/231379.231389.

[86]. Anderson, P. and Zarins, M., ―The CodeSurfer Software Understanding Platform.‖ In

Proceedings of the 13th International Workshop on Program Comprehension (May 15 - 16,

http://pmd.sourceforge.net/

214

2005). IWPC. IEEE Computer Society, Washington, DC, 2005, pp. 147-148.

DOI= http://dx.doi.org/10.1109/WPC.2005.37.

[87]. Pugh, K., Lint for C++. C Users J. vol. 11, no. 9, Sep. 1993, pp. 123-127.

[88]. Flanagan, C., Leino, K. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R., ―Extended

Static Checking For Java.‖ In Proceedings of the ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation (Berlin, Germany, June 17 - 19, 2002).

PLDI '02. ACM, New York, NY, 2002, pp. 234-245.

DOI= http://doi.acm.org/10.1145/512529.512558.

[89]. Console, L., Friedrich, G., and Dupré, D. T., ―Model-Based Diagnosis Meets Error Diagnosis

in Logic Programs‖ (Extended Abstract). In Proceedings of the First International Workshop

on Automated and Algorithmic Debugging (May 03 - 05, 1993). P. Fritzon, Ed. Lecture Notes

In Computer Science, vol. 749. Springer-Verlag, London, 1993, pp. 85-87.

[90]. Mayer, W. and Stumptner, M., ―Evaluating Models for Model-Based Debugging.‖ In

Proceedings of the 23rd IEEE/ACM International Conference on Automated Software

Engineering (September 15 - 19, 2008). IEEE Computer Society, Washington, DC, 2008,

pp. 128-137. DOI= http://dx.doi.org/10.1109/ASE.2008.23.

[91]. Yilmaz, C. and Williams, C., ―An Automated Model-Based Debugging Approach.‖ In

Proceedings of the Twenty-Second IEEE/ACM International Conference on Automated

Software Engineering (Atlanta, Georgia, USA, November 05 - 09, 2007). ASE '07. ACM,

New York, NY, 2007, pp. 174-183. DOI= http://doi.acm.org/10.1145/1321631.1321659.

[92]. Mayer, W. and Stumptner, M., ―Abstract Interpretation of Programs for Model-Based

Debugging.‖ In Proceedings of the 20th International Joint Conference on Artifical

intelligence (Hyderabad, India, January 06 - 12, 2007). R. Sangal, H. Mehta, and R. K. Bagga,

Eds. Ijcai Conference on Artificial Intelligence. Morgan Kaufmann Publishers, San Francisco,

CA, 2007, pp. 471-476.

[93]. Shende, S., Cuny, J., Hansen, L., Kundu, J., McLaughry, S., and Wolf, O., Event and State-

Based Debugging in TAU: A Prototype. In Proceedings of the SIGMETRICS Symposium on

Parallel and Distributed Tools (Philadelphia, Pennsylvania, United States, May 22 - 23,

1996). SPDT '96. ACM, New York, NY, 1996, pp. 21-30.

DOI= http://doi.acm.org/10.1145/238020.238030.

215

[94]. Anonymous, ―Automating C/C++ Runtime Error Detection with Parasoft Insure++,‖

http://www.parasoft.com/jsp/products/.

[95]. Sastry, D. C. and Jagadeesh, J. M., ―Better Development with Boundschecker.‖ Computer vol.

29, no. 6, Jun. 1996, pp. 107-109. DOI= http://dx.doi.org/10.1109/MC.1996.507643.

[96]. Anonymous, ―IBM Rational Purify‖; http://www-306.ibm.com/software/awdtools/purify.

[97]. Roy, G., ―mpatrol,‖ http://sourceforge.net/projects/mpatrol/.

[98]. Perens, B., ―Electric Fence,‖ http://perens.com/FreeSoftware/.

[99]. Anonymous, ―Diversity Analyzer,‖ 2004; http://www.vidakquality.com/.

[100]. Wang, T. and Roychoudhury, A., ―Hierarchical Dynamic Slicing.‖ In Proceedings of the 2007

International Symposium on Software Testing and Analysis (London, United Kingdom, July

09 - 12, 2007). ISSTA '07. ACM, New York, NY, 2007, pp. 228-238.

DOI= http://doi.acm.org/10.1145/1273463.1273494.

[101]. Sridharan, M., Fink, S. J., and Bodik, R., ―Thin Slicing.‖ In Proceedings of the 2007 ACM

SIGPLAN Conference on Programming Language Design and Implementation (San Diego,

California, USA, June 10 - 13, 2007). PLDI '07. ACM, New York, NY, 2007, pp. 112-122.

DOI= http://doi.acm.org/10.1145/1250734.1250748.

[102]. Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L., ―A Brief Survey of Program Slicing.‖

SIGSOFT Softw. Eng. Notes 30, 2 (Mar. 2005), 2005, pp. 1-36.

DOI= http://doi.acm.org/10.1145/1050849.1050865.

[103]. Tip, F., ―A Survey of Program Slicing Techniques,‖ Journal of Programming Languages

(JPL), vol. 3, Chapman & Hall, 1995. pp. 121-189.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.3782.

[104]. Saito, Y., ―Jockey: A User-Space Library for Record-Replay Debugging.‖ In Proceedings of

the Sixth International Symposium on Automated Analysis-Driven Debugging (Monterey,

California, USA, September 19 - 21, 2005). AADEBUG'05. ACM, New York, NY, 2005, pp.

69-76. DOI= http://doi.acm.org/10.1145/1085130.1085139.

[105]. Ducassé, M. ―Coca: An Automated Debugger for C.‖ In Proceedings of the 21st International

Conference on Software Engineering (Los Angeles, California, United States, May 16 - 22,

1999). ICSE '99. ACM, New York, NY, 1999, pp. 504-513.

DOI= http://doi.acm.org/10.1145/302405.302682.

http://www.parasoft.com/jsp/products/
http://www-306.ibm.com/software/awdtools/purify
http://sourceforge.net/projects/mpatrol/
http://perens.com/FreeSoftware/
http://www.vidakquality.com/

216

[106]. Templer, K. and Jeffery, C., ―A Configurable Automatic Instrumentation Tool for ANSI C.‖

In Proceedings of the 13th IEEE International Conference on Automated Software

Engineering (October 13 - 16, 1998). IEEE Computer Society, Washington, DC, 1998,

pp. 249 - 258. DOI= http://doi.ieeecomputersociety.org/10.1109/ASE.1998.732663.

[107]. Jeffery, C., Zhou, W., Templer, K., and Brazell, M., ―A Lightweight Architecture for Program

Execution Monitoring.‖ In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis For Software Tools and Engineering (Montreal, Quebec, Canada, June 16 -

16, 1998). A. M. Berman, Ed. PASTE '98. ACM, New York, NY, 1998, pp. 67-74.

DOI= http://doi.acm.org/10.1145/277631.277644.

[108]. Jeffery, C., ―Program Monitoring and Visualization: An Exploratory Approach,‖ Springer-

Verlag New York, Inc., 1999.

[109]. Hanson, D. R., ―Variable Associations in SNOBOL4,‖ Software: Practice and Experience,

vol. 6, no. 2, (Published Online: Oct. 27, 2006, by John Wiley & Sons, Ltd.), 1976,

pp. 245-254. http://dx.doi.org/10.1002/spe.4380060210.

[110]. Jeffery, C., Auguston, M., and Underwood, S., ―Towards Fully Automatic Execution

Monitoring.‖ In Proceedings of Radical Innovations of Software and Systems Engineering in

the Future. LNCS Springer. 2002, pp. 29-41. 2004.

http://www.springerlink.com/content/chwcn2wyjv35xfg8.

[111]. Bruneton, E., ―ASM 3.0: A Java Bytecode Engineering Library,‖ 2007; http://asm.ow2.org/.

[112]. Bungale, P. P. and Luk, C., ―Pinos: A Programmable Framework for Whole-System Dynamic

Instrumentation.‖ In Proceedings of the 3rd International Conference on Virtual Execution

Environments (San Diego, California, USA, June 13 - 15, 2007). VEE '07. ACM, New York,

NY, 2007, pp. 137-147. DOI= http://doi.acm.org/10.1145/1254810.1254830.

[113]. Srivastava, A. and Eustace, A., ―ATOM: A System for Building Customized Program

Analysis Tools.‖ In Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation (Orlando, Florida, United States, June 20 - 24, 1994).

PLDI '94. ACM, New York, NY, 1994, pp. 196-205.

DOI= http://doi.acm.org/10.1145/178243.178260.

[114]. Shapiro, E. Y. Algorithmic Program Debugging. MIT Press, Cambridge, Massachusetts. 1983.

http://asm.ow2.org/

217

[115]. Albertsson, L., ―Simulation-Based Debugging of Soft Real-Time Applications.‖ In

Proceedings of the Seventh Real-Time Technology and Applications Symposium (RTAS '01)

(May 30 - June 01, 2001). RTAS. IEEE Computer Society, Washington, DC, 2001, pp. 107.

[116]. Nichols, B., Buttlar, D., and Farrell, J. P., ―PThreads Programming: A POSIX Standard for

Better Multiprocessing,‖ (O'Reilly Nutshell), Sep. 1996.

[117]. John R. Levine. ―Linkers and Loaders. ― Academic Press, San Diego, CA, USA, 2000.

[118]. Webopedia, http://www.webopedia.com/TERM/A/agent.html

[119]. Al-Sharif, Z., and Jeffery, C., ―Language Support for Event-Based Debugging.‖ In

Proceedings of the 21st International Conference on Software Engineering and Knowledge

Engineering (SEKE 2009), Boston, July 1-3, 2009, pp. 392-399.

[120]. Al-Sharif, Z., and Jeffery, C., ―A Multi-Agent Debugging Extension Architecture.‖ In

Proceedings of the 21st International Conference on Software Engineering and Knowledge

Engineering (SEKE 2009), Boston, July 1-3, 2009, pp. 194-199.

[121]. Al-Sharif, Z. and Jeffery, C., ―An Agent-Oriented Source-Level Debugger on Top of a

Monitoring Framework.‖ In Proceedings of the 2009 Sixth International Conference on

Information Technology: New Generations - Volume 00 (April 27 - 29, 2009). ITNG. IEEE

Computer Society, 2009, pp. 241-247.

DOI= http://dx.doi.org/10.1109/ITNG.2009.305.

[122]. Al-Sharif, Z. and Jeffery, C., ―An Extensible Source-Level Debugger.‖ In Proceedings of the

2009 ACM Symposium on Applied Computing (Honolulu, Hawaii). SAC '09. ACM, New

York, NY, 2009, pp. 543-544. DOI= http://doi.acm.org/10.1145/1529282.1529397.

[123]. Drusinsky, D., Shing, M., and Demir, K., ―Test-Time, Run-Time, and Simulation-Time

Temporal Assertions in RSP.‖ In Proceedings of the 16th IEEE International Workshop on

Rapid System Prototyping (June 08 - 10, 2005). RSP. IEEE Computer Society, Washington,

DC, 2005, pp. 105-110. DOI= http://dx.doi.org/10.1109/RSP.2005.50.

[124]. Koymans, R. ―Specifying Real-Time Properties with Metric Temporal Logic.‖ Real-Time

Syst. vol. 2, no. 4, (Kluwer Academic Publishers Norwell, MA, USA), Oct. 1990, 1990,

pp. 255-299. DOI= http://dx.doi.org/10.1007/BF01995674.

[125]. Drusinsky, D., Michael, B., Shing, M., ―A Framework for Computer-Aided Validation,‖

Innovations in Systems and Software Engineering, vol. 4, no. 2, June, 2008, pp. 161-168.

218

[126]. Drusinsky, D. and Shing, M., ―Monitoring Temporal Logic Specifications Combined with

Time Series Constraints.‖ Journal of Universal Computer Science, vol. 9, no. 11, 2003,

pp. 1261-1276. http://www.jucs.org/jucs_9_11/monitoring_temporal_logic_specification.

[127]. Golan, M., ―A Very High Level Debugging Language.‖ Doctoral Thesis. UMI Order Number:

UMI Order No. GAX94-10113., Princeton University, Princeton, NJ. 1994.

[128]. Walker, K. and Griswold, R. E., ―An Optimizing Compiler for the Icon Programming

Language.‖ Softw. Pract. Exper.vol. 22, no. 8, (John Wiley & Sons, Inc. New York, NY,

USA), Aug. 1992, pp. 637-657. DOI= http://dx.doi.org/10.1002/spe.4380220803.

[129]. Wilder, M. D., ―The Uniconc Optimizing Unicon Compiler.‖ In Companion to the 21st ACM

SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and

Applications (Portland, Oregon, USA, October 22 - 26, 2006). OOPSLA '06. ACM, New

York, NY, 2006, pp. 756-757. DOI= http://doi.acm.org/10.1145/1176617.1176710.

[130]. Wilder, M., and Jeffery, C., ―Towards Fast Incremental Hashing of Large Bit Vectors.‖ In

Proceedings of the 41st Annual Hawaii International Conference on System Sciences

(HICSS), 2008, pp. 474.

